• Title/Summary/Keyword: cDNA sequence

Search Result 1,825, Processing Time 0.033 seconds

Identification of Antagonistic Bacteria, Pseudomonas aurantiaca YC4963 to Colletotri­chum orbiculare Causing Anthracnose of Cucumber and Production of the Antibiotic Phenazine-l-carboxylic acid (Colletotrichum orbiculare에 대한 길항세균 Pseudomonas aurantiaca YC4963의 분리 동정 및 항균물질 Phenazine-1-carboxylic acid의 생산)

  • Chae Hee-Jung;Kim Rumi;Moon Surk-Sik;Ahn Jong-Woong;Chung Young-Ryun
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.342-347
    • /
    • 2004
  • A bacterial strain YC4963 with antifungal activity against Colletotrichum orbiculare, a causal organism of cucumber anthracnose was isolated from the rhizosphere soil of Siegesbeckia pubescens Makino in Korea. Based on physiological and biochemical characteristics and 16S ribosomal DNA sequence analysis, the bac­terial strain was identified as Pseudomonas aurantiaca. The bacteria also inhibited mycelial growth of several plant fungal pathogens such as Botrytis cinerea, Fusarium oxysporum and Rhizoctonia solani on PDA and 0.1 TSA media. The antifungal activity was found from the culture filtrate of this isolate and the active compound was quantitatively bound to XAD adsorption resin. The antibiotic compound was purified and identified as phenazine-l-carboxylic acid on the basis of combined spectral and chemical analyses data. This is the first report on the production of phenazine-l-carboxylic acid by Pseudomonas aurantiaca.

Amino Acid Biosynthesis and Gene Regulation in Seed (종자내 아미노산 합성 조절 유전자에 관한 연구)

  • ;;;;;Fumio Takaiwa
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.07a
    • /
    • pp.61-74
    • /
    • 1996
  • Human and monogastric animals can not synthesize 10 out of the 20 amino asids and therefor need to obtain these from their diet. The plant seed is a major source of dietary protein. It is particular important in their study to increase nutritional quality of the seed storage proteins. The low contents of lysine, asparagine and threonenein various cereal seeds and of cystein and methionine. In legume seeds is due to the low proportions of these amino acids in the major storage proteins, we have tried to apply the three strategies; (1) mutagenesis and selection of specific amino acid analogue resistance, (2) cloning and expression study of lysine biosynthesis related gene, (3) transfomation of lysine rich soybean glycinin gene. The 5-methyltryptophan (5MT) resistant cell lines, SAR1, SAR2 and SAR3 were selected from anther derived callus of rice (Oryza sativa L. "Sasanishiki"). Among these selected cell lines, two (SAR1 and SAR3) were able to grow stably at 200 mg/L of 5MT. Analysis of the freed amino acids in callus shows that 5MT resistant cells (SAR3) accumulated free tryptophan at least up to 50 times higher than those that of the higher than of SAS. These results indicated that the 5MT resistant cell lines are useful in studies of amino acid biosynthesis. Tr75, a rice (Oryza sativa L., var. Sasanishiki) mutant resistant to 5MT was segregated from the progenies of its initial mutant line, TR1. The 5MT resistant of TR75 was inherited in the M8 generations as a single dominant nuclear gene. The content of free amino acids in the TR75 homozygous seeds increased approximately 1.5 to 2.0 fold compared to wild-type seeds. Especially, the contents of tryptophan, phenylalanine and aspartic acid were 5.0, 5.3 and 2.7 times higher than those of wild-type seeds, respectively. The content of lysine is significantly low in rice. The lysine is synthesized by a complex pathway that is predominantly regulated by feedback inhibition of several enzymes including asparginase, aspatate kinase, dihydrodipicolinat synthase, etc. For understanding the regulation mechanism of lysine synthesis in rice, we try to clone the lysine biosynthetic metabolism related gene, DHPS and asparaginase, from rice. We have isolated a rice DHPS genomic clone which contains an ORF of 1044 nucleotides (347 amino acids, Mr. 38, 381 daltons), an intron of 587 nucleotides and 5'and 3'-flanking regions by screening of rice genomic DNA library. Deduced amino acid sequence of mature peptide domain of GDHPS clone is highly conserved in monocot and dicot plants whereas that of transit peptide domain is extremely different depending on plant specie. Southern blot analysis indicated that GDHPS is located two copy gene in rice genome. The transcripts of a rice GDHPS were expressed in leaves and roots but not detected in callus tissues. The transcription level of GDHPS is much higher in leaves indicating enormous chloroplast development than roots. Genomic DNA clones for asparaginase genes were screened from the rice genomic library by using plaque hybridization technique. Twelve different genomic clones were isolated from first and second screening, and 8 of 12 clones were analyzed by restriction patterns and identified by Southern Blotting, Restriction enzyme digestion patterns and Southern blot analysis of 8 clones show the different pattern for asparaginase gene. Genomic Southern blot analysis from rice were done. It is estimated that rice has at least 2-3 copy of asparaginase gene. One of 8 positive clones was subcloned into the pBluescript SK(+) vector, and was constructed the physical map. For transformation of lysine rich storage protein into tobacco, soybean glycinin genes are transformed into tobacco. To examine whether glycinin could be stably accumulated in endosperm tissue, the glycinin cDNA was transcriptionally fused to an endosperm-specific promotor of the rice storage protein glutelin gene and then introduced into tobacco genomic via Agrobacterium-mediated transformation. Consequently the glycinin gene was expressed in a seed-and developmentally-specific manner in transgenic tobacco seeds. Glycinin were targeted to vacuole-derived protein bodies in the endosperm tissue and highly accumulated in the matrix region of many transgenic plant (1-4% of total seed proteins). Synthesized glycinin was processed into mature form, and assembled into a hexamer in a similar manner as the glycinin in soybean seed. Modified glycinin, in which 4 contiguous methionine residues were inserted at the variable regions corresponding to the C - teminal regions of the acidic and basic polypeptides, were also found to be accumulated similarly as in the normal glycinin. There was no apparent difference in the expression level, processing and targeting to protein bodies, or accumulation level between normal and modified glycinin. glycinin.

  • PDF

Quality Evaluation by the Addition of Pine Needle and Artemisia princeps Extracts in Vinegared Kochujang (솔잎, 약쑥추출물을 첨가한 초고추장의 품질평가)

  • Kim, Eun-Lyang;Kang, Sun-Chul
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.167-177
    • /
    • 2007
  • This study was carried out to develop natural vinegared kochujang. We first formulated vinegared kochujang containing pine needle (PN) and Artemisia princeps (AP) extracts. A dominant strain was isolated from the vinegared kochujang and identified as Bacillus amyloliquefaciens ER282 based on the 16S rDNA sequence. The plant extracts of PN and AP were also investigated for their antibacterial activity and showed enough good activities to use for vinegared kochujang as a natural preservative. Quality characteristics of vinegared kochujang were evaluated, based on total cell numbers, pH, acidity, sugar content, color and sensory evaluation during storage at $25^{\circ}C$ and $37^{\circ}C$, respectively, for 3 weeks. No significant differences were found in the pHs and acidities of vinegared kochujang added with the plant extracts of PN and AP during their storage compared to starting time; however, total cell numbers were gradually decreased during the storage at $25^{\circ}C$ and $37^{\circ}C$, as the storage period was increased. For sensory evaluation, overall preference continuously declined depending on storage period, but the addition of 3% extracts of PN could delay the quality loss of vinegared kochujang during storage at $25^{\circ}C$ and $37^{\circ}C$ for 3 weeks.

Development of pSJE6c, an Expression Vector for Kimchi Lactic Acid Bacteria, and Heterologous Gene Expression Using the Vector (김치유산균용 발현벡터 pSJE6c 개발과 이를 이용한 외래 유전자 발현)

  • Lee, Kang-Wook;Park, Ji-Yeong;Lee, Ji-Yeon;Lee, Hwang-A;Baek, Chang-Un;Jo, Hyeon-Deok;Kim, Joo-Yeon;Kwon, Gun-Hee;Chun, Ji_Yeon;Kim, Jeong-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.389-398
    • /
    • 2009
  • Development of expression vectors is important for the basic and applied researches on kimchi LAB (lactic acid bacteria). An expression vector, pSJE6c was constructed by inserting P6C promoter sequence from Lactococcus lactis into pSJE, a shuttle vector for E. coli and Leuconostoc species. To test the efficiency of pSJE6c, aga ($\alpha$-galactosidase) and lacZ ($\beta$-galactosidase) genes were expressed in Lactobacillus brevis 2.14. Compared to the pSJE, expression levels of both genes were increased, indicating P6C promoter was better than indigenous promoters. Enzyme activities of L. brevis cells harboring pSJE6caga (pSJE6c with aga) or pSJE6Z (pSJE6c with lacZ) were 1.5-2 fold higher than those with pSJEaga (pSJE with aga) or pSJEZ (pSJE with lacZ). More RNA transcripts were detected in cells harboring pSJE6c based recombinant plasmid. The results indicated that heterologous gene expressions in kimchi LAB could be improved significantly by use of efficient expression vectors.

Antifungal Activity of Bacillus sp. AM-651 Against Phytophthora capsici (고추역병 유발병원균 Phytophthora capsici에 대한 Bacillus sp. AM-651의 항진균활성)

  • Lee, Jung-Bok;Shin, Jeong-Hak;Jang, Jong-Ok;Shin, Kee-Sun;Choi, Chung-Sik;Kim, Kun-Woo;Jo, Min-Sub;Jeon, Chun-Pyo;Kim, Yun-Hoi;Kwon, Gi-Seok
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.227-232
    • /
    • 2008
  • Biological antagonists of Phytophthora capsici were isolated from soil in Gyeongbuk, Korea. Among the isolated bacteria, a Bacillus sp. was identified from l6S rDNA sequence analysis and named Bacillus sp. AM-651. Bacillus sp. AM-65l strain which can strongly a antifungal activity against Phytophthora capsici. Culture conditions for the maximum production of the antagonistic substance were optimized. The production of antibiotic were high on modified Davis mineral medium pH 7 at $30^{\circ}C$. The medium for highest production of the agonistic substance optimized. It is composed the best activity on glucose, $(NH_4)_2SO_4$ and $K_2HPO_4$ at 0.5%, 0.1%, and 0.7%, respectively. By time course of culture solution selected Bacillus sp. AM-65l, the culture solution after 48hrs had strongly growth inhibition rate against P. capsici. And culture solution of Bacillus sp. AM-651 was stable within a pH range $5{\sim}11$ and temperature range $4{\sim}70^{\circ}C$. Bacillus sp. AM-651 cultured broth shown fungal growth inhibitory activity against B. sorokiniana, B. cinerea, R. solani avove and beyond P. capsici and comparatively showed a high activity against C. gloeosporioides, B. dothidea, B. cinerea and F. graminearum by agar diffusion method.

Isolation and Characterization of Burkholderia cepacia EB215, an Endophytic Bacterium Showing a Potent Antifungal Activity Against Colletotrichum Species (탄저병균에 길항력이 우수한 식물내생세균 Burkholderia cepacia EB215의 분리 및 특성 규명)

  • Park Ji Hyun;Choi Gyung Ja;Lee Seon-Woo;Jang Kyoung Soo;Lim He Kyoung;Chung Young Ryun;Cho Kwang Yun;Kim Jin-Cheol
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.1
    • /
    • pp.16-23
    • /
    • 2005
  • In order to develop a new microbial fungicide using endophytic bacteria for the control of anthracnoses occurring on various crops, a total of 260 bacterial strains were isolated from fresh tissues of 5 plant species. After they were cultured in broth medium, their antifungal activities were tested for in vivo antifungal activity against cucumber anthracnose caused by Colletotrichum orbiculare. As the results, liquid cultures of 28 strains showed potent antifungal activities more than $90\%$ against cucumber anthracnose. At 3-fold dilutions of liquid cultures, 18 strains inhibited the development of cucumber anthracnose of more than $70\%$. They were further tested for in vivo antifungal activity against red pepper anthracnose caused by C. coccodes and in vitro antifungal activity against C. acutatum, a fungal agent causing red pepper anthracnose. Among 18 strains, a bacterial strain EB215 isolated from cucumber roots displayed the most potent antifungal activity against Colletotrichum species. It was identified as Burkholderia cepacia based on its physiological and biochemical characteristics, Biolog test and 16S rDNA gene sequence. It also controlled effectively the development of rice blast (Magnaporthe grisea), rice sheath blight (Corticium sasaki), tomato gray mold (Botrytis cinerea), and tomato late blight (Phytophthora infestans). Studies on the characterization of antifungal substances produced by B. cepacia EB215 are in progress.

Construction of a Genetic Linkage Map in Radish(Raphanus sativus L.) Using RAPD Markers (RAPD 마커를 이용한 무의 유전자지도 작성)

  • Ahn, Choon-Hee;Choi, Su-Ryun;Lim, Yong-Pyo;Chung, Hae-Joon;Yae, Byeong-Woo;Yoon, Wha-Mo
    • Journal of Plant Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.151-159
    • /
    • 2002
  • Genetic map and molecular marker have a great importance in improving and facilitating crop breeding program as well as in genome analysis and map-based cloning of genes representing desirable characters. This study aimed at developing RAPD markers and constructing a genetic linkage map using 82 BC$_1$F$_1$individuals originated from the cross between '835' and B$_2$in radish (Raphanus sativus L.). One of the parents for genetic linkage map construction, '835'(P$_1$) of egg type is susceptible to Fusarium wilt and have medium resistance to virus infection and the other parent, B$_2$(P$_2$) of round type, is susceptible to Fusarium wilt and virus, Screening of 394 RAPD primers in BC$_1$F$_1$) population resulted in selecting 128 polymorphic markers which displayed 1:1 segregation pattern. Two markers failed to display 1:1 segregation and showed the segregation ratio skewed to maternal genotype. Selected markers were categorized into 14 linkage group based on LOD score represented by MAPMAKER/EXP program. Five groups composed of single marker among them were excluded from the linkage map, and consequently, the remaining groups are well matched with the number of radish chromosome (n=9). The linkage map constructed with 128 markers covers 1,688.3 cM and the average distance between markers was 13.8 cM. For developing STS marker, we determined the partial nucleotide sequence of OPE10 marker at both ends and designed a oligonucleotide primer pair based on this sequence. STS PCR using the primer pair displayed a single, clear band of which segregation is perfectly matched with that of OPE10 marker. This implies that RAPD markers could readily convert into clear and reliable STS markers.

The effect of antagonists produced by Paenibacillus polymyxa CK-1 on the growth of Trichoderma sp. (Paenibacillus polymyxa CK-1이 생산한 길항물질이 Trichoderma sp. 생육에 미치는 영향)

  • Lee, Sang-Won;Choi, Jin-Sang;Kim, Chul-Ho
    • Journal of Mushroom
    • /
    • v.12 no.3
    • /
    • pp.201-208
    • /
    • 2014
  • The separation of the bacteria inhibiting Trichoderma sp. mold, the strain causing blue mold disease that occurs frequently when cultivating mushroom while carrying out the efficient fermentation of mushroom medium, from the growth was done. In about 200 strains isolated primarily from fungus garden samples, 6 strains were secondly isolated, which had fast growth rates and a clear zone on the plate medium of SM, AM, and CM. Among the 6 strains isolated, the C-1 strain showed high enzymatic activity of cellulase, amylase, and protease, and strong antibacterial activity for the T. virens and T. harzianum, selected finally. The selected C-1 strain was identified as Paenibacillus polymyxaby the result of the identification by Bergey's Manual of Systematic Bacteriology and the analysis of the nucleotide sequence of 16S rRNA, and named as P. polymyxa CK-1. In reviewing the growth conditions of the P. polymyxa CK-1 strain, the optimum cultivation temperature was $45^{\circ}C$, and the optimum pH for growth was in the range of 6.0~7.0. Appropriate incubation time of P. polymyxa CK-1 for the growth inhibition of the fungus T. virens and T. harzianum was 22 to 36 hours. And the fungal growth was not observed, even when leaving two molds inoculated on each petri dishes, which were treated with 24 hour culture solution of P. polymyxa CK-1 strain for 10 days. As a result of studying the thermal stability of the antagonists produced by the P. polymyxa CK-1 strain, no mycelial growth of the two fungi was observed in the test group treated for 20 minutes at $60^{\circ}C$ and $100^{\circ}C$, but mycelial growth was slightly observed in the test group treated for 20 minutes at $121^{\circ}C$. As aresult of reviewing the impact of the P. polymyxa CK-1 culture medium on mushroom mycelial growth, it showed no effect on a variety of mushroom mycelial growth including enoki mushroom and shiitake mushroom.

Isolation and characterization of sigH from Corynebacterium glutamicum (Corynebacterium glutamicum의 sigH 유전자의 분리 및 기능분석)

  • Kim Tae-Hyun;Kim Hyung-Joon;Park Joon-Sung;Kim Younhee;Lee Heung-Shick
    • Korean Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.99-104
    • /
    • 2005
  • Corynebacterial clones which exert regulatory effects on the expression of the glyoxylate bypass genes were isolated using a reporter plasmid carrying the enteric lacZ fused to the aceB promoter of Corynebacterium glutamicum. Some clones carried common fragments as turned out by DNA mapping technique. Subcloning analysis followed by the measurement of $\beta-galactosidase$ activity in Escherichia coli identified the region responsible for the aceB-repressing activity. Sequence analysis of the DNA fragment identified two independent ORFs of ORF1 and ORF2. Among them, ORF2 was turned out to be responsible for the aceB-repressing activity. ORF1 encoded a 23,216 Da protein composed of 206 amino acids. Sequence similarity search indicated that the ORF may encode a ECF-type $\sigma$ factor and designated sigH. To identify the function of sigH, C. glutamicum sigH mutant was constructed by gene disruption technique and the sigH mutant showed growth retardation as compared to the wild type strain. In addition, the mutant strain showed sensitivity to oxidative-stress generating agent plumbagin. This result imply that sigH is probably involved in the stress response occurring during normal cell growth.

Characterization of Cellulase and Xylanase from Bacillus subtilis NC1 Isolated from Environmental Soil and Determination of Its Genes (Bacillus subtilis NC1 유래 cellulase와 xylanase의 특성 규명 및 효소 유전자의 규명)

  • Park, Chang-Su;Kang, Dae-Ook;Choi, Nack-Shick
    • Journal of Life Science
    • /
    • v.22 no.7
    • /
    • pp.912-919
    • /
    • 2012
  • A Bacillus sp. strain producing celluase and xylanase was isolated from environmental soil with LB agar plate containing carboxymethylcellulose (CM-cellulose) and beechwood xylan stained with trypan blue as substrates, respectively. Based on the 16S rRNA gene sequence and API 50 CHL test, the strain was identified as B. subtilis and named B. subtilis NC1. The cellulase and xylanase from B. subtilis NC1 exhibited the highest activities for CM-cellulose and beechwood xylan as substrate, respectively, and both enzymes showed the maximum activity at pH 5.0 and $50^{\circ}C$. We cloned and sequenced the genes for cellulase and xylanase from genomic DNA of the B. subtilis NC1 by the shot-gun cloning method. The cloned cellulase and xylanase genes consisted of a 1,500 bp open reading frame (ORF) encoding a 499 amino acid protein with a calculated molecular mass of 55,251 Da and a 1,269 bp ORF encoding a 422 amino acid protein with a calculated molecular mass of 47,423 Da, respectively. The deduced amino acid sequences from the genes of cellulase and xylanase showed high identity with glycosyl hydrolases family (GH) 5 and 30, respectively.