Browse > Article

Isolation and characterization of sigH from Corynebacterium glutamicum  

Kim Tae-Hyun (Graduate School of Biotechnology, Korea University)
Kim Hyung-Joon (Graduate School of Biotechnology, Korea University)
Park Joon-Sung (Graduate School of Biotechnology, Korea University)
Kim Younhee (Department of Oriental Medicine, Semyung University)
Lee Heung-Shick (Department of Biotechnology and Bioinformatics, Korea University)
Publication Information
Korean Journal of Microbiology / v.41, no.2, 2005 , pp. 99-104 More about this Journal
Abstract
Corynebacterial clones which exert regulatory effects on the expression of the glyoxylate bypass genes were isolated using a reporter plasmid carrying the enteric lacZ fused to the aceB promoter of Corynebacterium glutamicum. Some clones carried common fragments as turned out by DNA mapping technique. Subcloning analysis followed by the measurement of $\beta-galactosidase$ activity in Escherichia coli identified the region responsible for the aceB-repressing activity. Sequence analysis of the DNA fragment identified two independent ORFs of ORF1 and ORF2. Among them, ORF2 was turned out to be responsible for the aceB-repressing activity. ORF1 encoded a 23,216 Da protein composed of 206 amino acids. Sequence similarity search indicated that the ORF may encode a ECF-type $\sigma$ factor and designated sigH. To identify the function of sigH, C. glutamicum sigH mutant was constructed by gene disruption technique and the sigH mutant showed growth retardation as compared to the wild type strain. In addition, the mutant strain showed sensitivity to oxidative-stress generating agent plumbagin. This result imply that sigH is probably involved in the stress response occurring during normal cell growth.
Keywords
Corynebacterium glutamicum; sigH; sigma factor; stress;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ades, S.E., I.L. Grigorova, and C.A. Gross. 2003. Regulation of the alternative sigma factor ${\sigma}^E$ during initiation, adaptation, and shutoff the extracytoplasmic heat shock response in Eascherichia coli . J. Bacteriol. 185, 2512-2519   DOI   ScienceOn
2 Engels, S., S. J. E. Schweitzer, C. Ludbig, M. Bott, and S. Schaffer. 2004. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor ${\sigma}^H$. Mol. Microbiol. 52, 295-302
3 Follettie, M.T., O. Peoples, C. Agoropoulou, and A.J. Sinskey. 1993. Gene structure and expression of the Corynebacterium flavum N13. ask-asd operon J. Bacteriol. 175, 4096-4103
4  Hermann, T. 2003. Industrial production of amino acids by coryneform bacteria. J. Biotechnol. 104, 155-172   DOI   ScienceOn
5 Kim, H. J. 2001. Ph.D. thesis. Korea University
6 Kornberg, H.L. 1996. The role and control of the glyoxylate cycle in Escherichia coli. Biochem. J. 99, 1-11
7 Manganelli. R., M.I. Voskuil, G.K. Schoolnik, and I. Smith. 2001. The Mycobacterium tuberculosis ECF sigma factor $\sigma$E: role in global gene expression and survival in macrophage. Mol. Microbiol.41, 423-437   DOI   ScienceOn
8 Paget, M.S.B., J.G. Kang, J.H. Roe, and M.J. Buttner. 1998. ${\sigma}^R$, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in rersponse to oxidative stress in Streoptomyces coelicolor A3(2). EMBO. J. 17, 5776-5782   DOI   PUBMED   ScienceOn
9 Raman, S., T. Song, X. Puyang, S. Varderov, WR Jr. Jacobs, and R. N. Husson. 2001. The alternative sigma factor sigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. J. Bacteriol. 183, 6119-6125   DOI   ScienceOn
10 Simons, R.W., F. Houman, and N. Kleckner. 1987. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53, 85-96   DOI   ScienceOn
11 Kang, J.K., M.Y. Hahn, A. Ishihama, and J.H. Roe. 1997. Identification of sigma factors for growth phase-related promoter selectivity of RNA polymerase from Streoptomyces coelicolor A3(2). Nuc. Acid. Res. 25, 2566-2573   DOI   PUBMED
12 Kim, H.J., T.H. Kim, Y. Kim, and H.S. Lee. 2004. Identification and characterization of glxR, a gene involved in the regulation of glyoxylate bypass in Corynebacterium glutamicum. J. Bacteriol. 186, 3453-3460   DOI   ScienceOn
13 Schafer, A., A. Tauch, W. Jager, J. Kalinowski, G. Thierbach, and A. Puhler. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69-73   DOI   ScienceOn
14 Storz, G. and J. A. Imlay. 1999. Oxidative stress. Curr. Opi. Microbiol. 2, 188-194   DOI   ScienceOn
15 Peters-Wendisch, P.G., C. Kreutzer, J. Kalinowski, M. Patek, H. Sahm, and B.J. Eikmanns. 2001. Pyruvate carboxylase as a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J. Mol. Microbiol. Biotechnol. 3, 295-300   PUBMED
16  Garnak, M. and H. Reeves. 1979. Purification and properties of phosphorylated isocitrate dehydrogenase of Escherichia coli. J. Biol. Chem. 254, 7915-7920   PUBMED
17 Antelmann, H., S. Engelmann, R. Schmid, A. Sorokin, A. Lapidus, and M. Hecker. 1997. Expression of a stress- and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor ${\sigma}^B$ in Bacillus subtilis. J. Bacteriol. 179, 7251-7256   DOI   PUBMED
18  Gubler, M., M. Jetten, H.S. Lee, and A.J. Sinskey. 1994. Cloning of the pyruvate kinase gene (pyk) of Corynebacterium glutamicumand site-specific inactivation of pyk in a lysine producing Corynebacterium lactofermentum strain. Appl. Environ. Microbiol. 60, 2494-2500   PUBMED
19 Malumbers M, and J.F. Martin. 1996. Molecular control mechanisms of lysine and threonine biosynthesis in amino acid producing Corynebacteria: redirecting carbon flow. FEMS Microbial Lett. 143, 103-114   DOI   PUBMED
20 Krömer, J.O., O. Sorgenfrei , K. Klopprogge, E. Heinzle, and C. Wittmann. 2004. In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J. Bacteriol. 186, 1769-1784   DOI   ScienceOn
21 Von der Osten, C. Gioannetti, A.J. Sinskey. 1989. Design of a defined medium for growth of Corynebacterium glutamicum in which citrate facilitate iron uptake. Biotech. Lett. 11, 11-16   DOI
22 Rodionov, D.A., A.G. Vitreschak, A.A. Mironov, M. S. Gelfand. 2003. Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Nuc. Acid. Res. 31, 6748-6757   DOI   ScienceOn
23 Kim, H.J., J.S. Park, and H.S. Lee. 2002. Utilization of lacZ to isolate regulatory genes from Corynebacterium glutamicum. J. Microbiol. Biotechnol. 12, 336-339
24 Raman, S., D.A., A.G. Vitreschak, A.A. Mironov, M.S. Gelfand. 2003. Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Nuc. Acid. Res. 31, 6748-6757   DOI   ScienceOn
25 Lee, H.-S., and A.J. Sinskey. 1994. Molecular characterization of aceB, a gene encoding malate synthase in Corynebacterium glutamicum. J. Microbiol. Biotechnol. 4, 256-263
26 Kinoshita, S., S. Udaka., and M. Shimono. 1957. Studies on the amino acid fermentation. Part I. Production of L-glutamic acid by various microorganisms. J. Gen. Appl. Microbiol. 3, 193-205   DOI
27 Sahm, H., L. Eggeling, B. Eikmanns, and R. Kramer. 1995. Metabolic design in amino acid producing bacterium Corynebacterium glutamicum. FEMS Microbiol. Rev. 16, 243-252   DOI   ScienceOn
28 Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory, Cold Spring harbor NY
29 Vallino, J. and G. Stephanopolous. 1993. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol. Bioeng. 41, 633-646   DOI   PUBMED
30  Jensen-Cain, D.M. and F.D. Quinn. 2001. Differential expression of sigE by Mycobacterium tuberculosis during intracellular growth. Microbial Pathol. 30, 271-278   DOI   ScienceOn
31 Martin, J.F., R. Santamaria, H. Sandoval, G. Del Real, L.M. Mateos, J.A. Gil, and A. Aguilar.1987. Cloning systems in amino acid-producing Corynebacteria. Biotechnol. 5, 137-146   DOI
32 Miller, J.H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
33 Dixon, G. H., and H. L. Kornberg. 1959. Assay method for key enzymes of the glyoxylate cycle. Biochem. J. 72, 3
34  Gerstmeir, R., A. Cramer, P. Dangel, S. Schaffer, and B.J. Eikmanns. 2004. RamB, a novel transcriptional regulator of gene involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 186, 2798-2809   DOI   ScienceOn
35 Kirkpatrick, C., L.M. Maurer, N.E. Oyelakin, Y.N. yoncheva, R. Mauder and J. L. Slonczewski. 2001. Acetate and formate stress: Opposite response in the proteome of Escherichia coli. J. Bacteriol. 183, 6466-6477   DOI   ScienceOn
36  Jetten, M.S.M., M.E. Gubler, S.H. Lee, and A.J. Sinskey. 1994. Structural and functional analysis of pyruvate kinase from Corynebacterium glutamicum. Appl. Environ. Microbiol. 60, 2501-2507   PUBMED