Isolation and Characterization of Burkholderia cepacia EB215, an Endophytic Bacterium Showing a Potent Antifungal Activity Against Colletotrichum Species

탄저병균에 길항력이 우수한 식물내생세균 Burkholderia cepacia EB215의 분리 및 특성 규명

  • Park Ji Hyun (Biological Function Research Team, Korea Research Institute of Chemical Technology, Division of Applied Life Sciences(BK21 program) and Research Institute of Natural Science, Gyeongsang National University) ;
  • Choi Gyung Ja (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Lee Seon-Woo (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Jang Kyoung Soo (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Lim He Kyoung (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Chung Young Ryun (Division of Applied Life Sciences (BK21 Program) and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho Kwang Yun (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Kim Jin-Cheol (Biological Function Research Team, Korea Research Institute of Chemical Technology)
  • 박지현 (한국화학연구원 생물기능연구팀, 경상대학교 응용생명과학부 기초과학연구소) ;
  • 최경자 (한국화학연구원 생물기능연구팀) ;
  • 이선우 (한국화학연구원 생물기능연구팀) ;
  • 장경수 (한국화학연구원 생물기능연구팀) ;
  • 임희경 (한국화학연구원 생물기능연구팀) ;
  • 정영륜 (경상대학교 응용생명과학부 기초과학연구소) ;
  • 조광연 (한국화학연구원 생물기능연구팀) ;
  • 김진철 (한국화학연구원 생물기능연구팀)
  • Published : 2005.03.01

Abstract

In order to develop a new microbial fungicide using endophytic bacteria for the control of anthracnoses occurring on various crops, a total of 260 bacterial strains were isolated from fresh tissues of 5 plant species. After they were cultured in broth medium, their antifungal activities were tested for in vivo antifungal activity against cucumber anthracnose caused by Colletotrichum orbiculare. As the results, liquid cultures of 28 strains showed potent antifungal activities more than $90\%$ against cucumber anthracnose. At 3-fold dilutions of liquid cultures, 18 strains inhibited the development of cucumber anthracnose of more than $70\%$. They were further tested for in vivo antifungal activity against red pepper anthracnose caused by C. coccodes and in vitro antifungal activity against C. acutatum, a fungal agent causing red pepper anthracnose. Among 18 strains, a bacterial strain EB215 isolated from cucumber roots displayed the most potent antifungal activity against Colletotrichum species. It was identified as Burkholderia cepacia based on its physiological and biochemical characteristics, Biolog test and 16S rDNA gene sequence. It also controlled effectively the development of rice blast (Magnaporthe grisea), rice sheath blight (Corticium sasaki), tomato gray mold (Botrytis cinerea), and tomato late blight (Phytophthora infestans). Studies on the characterization of antifungal substances produced by B. cepacia EB215 are in progress.

식물내생미생물을 이용하여 다양한 작물에 발병하는 탄저병을 방제하기 위한 미생물 살균제를 개발하기 위하여 건전한 식물체 조직으로부터 총 260개 균주를 분리하였다 이들은 액체배지에 배양한 후 오이 탄저병(Colletotrichum orbiculare)에 대하여 in vivo항균활성을 조사한 결과 28개의 균주가 $90\%$ 이상의 높은 방제활성을 보였다. 이들 28개의 균주의 배양액을 1/3로 희석하여 처리하였을 경우에는 18개 균주가 $70\%$ 이상의 방제활성을 보였다. 이들 18개의 균주에 대하여 고추 탄저병균(C. coccodes)에 대한 in vivo항균활성과 고추 탄저병균(C. acutatum)에 대한 in vitro 항균활성을 조사한 결과 EB215균주가 가장 우수한 활성을 보여주었다. 이 균은 생리$\cdot$생화학적 특성과 Biolog실험 및 16S rDNA 유전자 서열에 의해 Burkholderia cepacial 동정되었다. B. cepacia EB215균주의 배양액은 고추 탄저병 외에 벼 도열병(Magnaporthe grisea), 벼 잎집무의마름병(Corticium sasaki), 토마토 잿빛곰팡이병 (Botrytis cinerea) 및 토마토 역병 (Phytophthora infestans) 등에 높은 항균활성을 보였다. 현재 이 균주로부터 항균물질의 분리 및 구조 동정에 대한 연구를 실시하고 있다.

Keywords

References

  1. Bailey J. A, O' Connell, and C. Nash. 1992. Infection strategies of Colletotrichum species. pp. 88-120. In Bailey J. A and Jeger, M. J. (ed.), Colletotrichum: Biology, Pathology and Control. CABI, Wallingford, UK
  2. Balandreau, J., V. Viallard, B. Cournoyer, T. Coenye, S Laevens, and P. Vandamme. 2001. Burkholderia cepacia genomovar III is a common plant-associated bacterium. Appl. Environ. Microbiol. 67: 982-985 https://doi.org/10.1128/AEM.67.2.982-985.2001
  3. Burkholder. W. 1950. A bacterial rot of onion bulbs. Phytopathology 40: 115-118
  4. Cartwright, D. K., W. S. Chilton, and D. M. Benson. 1995. Pyrrolnitrin and phenazine production by Pseudomonas cepacia strain 5.5B, a biocontrol agent of Rhizoctonia solani. Appl. Microbiol. Biotechnol. 43: 211-216 https://doi.org/10.1007/BF00172814
  5. Coenye, T., L. Schouls, J. R. W. Govan, K. Kersters, and P. Vandamme. 1999. Identification of Burkholderia species and genomovars from cystic fibrosis patients by AFLP fingerprinting. Int. J. Syst. Bacteriol. 49: 1657-1666 https://doi.org/10.1099/00207713-49-4-1657
  6. Copping, L. G. 1998. The BioPesticide Manual. 1st ed. The British CropProtection Council, Farnham, Surrey, UK. 333 pp
  7. Elmer, W. H., H. A. Yang, and M. W. Sweetingham. 2001. Characterization of Colletotrichum gloeosporioides isolates from omamentallupines in connecticut. Plant Dis. 85: 216-219 https://doi.org/10.1094/PDIS.2001.85.2.216
  8. Fiore, A, S. Laevens, A Bevivino, C. Dalmastri, S. Tabacchioni, P. Vandamme, and L. Chiarini. 2001. Burkholderia cepacia complex: distribution of genomovars among isolates from the maize rhizosphere in Italy. Environ. Microbiol. 3: 137-143 https://doi.org/10.1046/j.1462-2920.2001.00175.x
  9. Hallmann, J., A. Quadt-Hallrnann, W. F. Mahaffee, and J. W. Kloepper. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43: 895-914 https://doi.org/10.1139/m97-131
  10. Janisiewicz, W. and J. Roitman. 1988. Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia. Annual Phytophathol. 55: 643-652
  11. John, G. H., N. R. Krieg, and P. H. Sneath. 1994. Bergey's Manual of Systemic Bacteriology. 9th ed., Williams and Wilkins, Baltimore, USA
  12. Keig, P. M., E. Inghant, P. A. R. Vandamme, and K. G. Kerr. 2002. Differential invasion of respiratory epithelial cells by members of the Burkholderia cepacia complex. Clin. Microbioi. Infect. 8: 47-49 https://doi.org/10.1046/j.1469-0691.2002.00356.x
  13. Kerr, A. 1980. Biological control of crown gall through production of agrocin 84. Plant Dis. 64: 24-30
  14. Kim, J-C., G. J. Choi, J.-H. Park, H. T. Kim, and K. Y. Cho. 2001. Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Manag. Sci. 57: 554-559 https://doi.org/10.1002/ps.318
  15. Kim, J-C., G J. Choi, S.-W. Lee, W.-S. Kim, K. Y. Chung, and K. Y. Cho. 2004. Screening extracts of Achyranthes japonica and Rumex crispus for activity against various plant pathogenic fungi and control of powdery mildew. Pest Manag. Sci. 60: 803-808 https://doi.org/10.1002/ps.811
  16. Kobayashi, D. Y. and J. D. Paulundo. 2000. Bacterial endo-phytes and their effect on plant uses in agriculture, pp. 199-233. In Bacon, C. W. and White, J. F. (ed.), Microbial endophytes. Marcel Dekker, Inc., New York, USA
  17. Lipuma, J. J., B. J. Dulaney, J. D. McMenamin, P. W. Whitby, T. L. Stull, T. Coenye, and P. Vandamme. 1999. Development of rRNA-based PCR assay for identification of Burkholderia cepacia complex isolates recovered from cystic fibrosis patients. J. Clin. Microbiol. 37: 3167-3170
  18. Meyer, J. M., D. Hohnadel, and F. Halle. 1989. Cepabactin from Pseudomonas cepacia, a new type of siderophore. J. Gen. Microbiol. 135: 1479-1487
  19. Zinniel, D. K., P. Lambrecht, N. B. Harris, Z. Feng, D. Kuczmarski, P. Higley, C. A. Ishimaru, A. Arunakumari, R. G. Barletta, and A. K. Vidaver. 2002. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol. 68: 2198-2208 https://doi.org/10.1128/AEM.68.5.2198-2208.2002