DOI QR코드

DOI QR Code

The effect of antagonists produced by Paenibacillus polymyxa CK-1 on the growth of Trichoderma sp.

Paenibacillus polymyxa CK-1이 생산한 길항물질이 Trichoderma sp. 생육에 미치는 영향

  • Lee, Sang-Won (Dept. of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Choi, Jin-Sang (Dept. of Food Science Gyeongnam National University of Science and Technology) ;
  • Kim, Chul-Ho (Dept. of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology)
  • 이상원 (경남과학기술대학교 제약공학과) ;
  • 최진상 (경남과학기술대학교 식품과학부) ;
  • 김철호 (경남과학기술대학교 제약공학과)
  • Received : 2014.08.26
  • Accepted : 2014.09.29
  • Published : 2014.09.30

Abstract

The separation of the bacteria inhibiting Trichoderma sp. mold, the strain causing blue mold disease that occurs frequently when cultivating mushroom while carrying out the efficient fermentation of mushroom medium, from the growth was done. In about 200 strains isolated primarily from fungus garden samples, 6 strains were secondly isolated, which had fast growth rates and a clear zone on the plate medium of SM, AM, and CM. Among the 6 strains isolated, the C-1 strain showed high enzymatic activity of cellulase, amylase, and protease, and strong antibacterial activity for the T. virens and T. harzianum, selected finally. The selected C-1 strain was identified as Paenibacillus polymyxaby the result of the identification by Bergey's Manual of Systematic Bacteriology and the analysis of the nucleotide sequence of 16S rRNA, and named as P. polymyxa CK-1. In reviewing the growth conditions of the P. polymyxa CK-1 strain, the optimum cultivation temperature was $45^{\circ}C$, and the optimum pH for growth was in the range of 6.0~7.0. Appropriate incubation time of P. polymyxa CK-1 for the growth inhibition of the fungus T. virens and T. harzianum was 22 to 36 hours. And the fungal growth was not observed, even when leaving two molds inoculated on each petri dishes, which were treated with 24 hour culture solution of P. polymyxa CK-1 strain for 10 days. As a result of studying the thermal stability of the antagonists produced by the P. polymyxa CK-1 strain, no mycelial growth of the two fungi was observed in the test group treated for 20 minutes at $60^{\circ}C$ and $100^{\circ}C$, but mycelial growth was slightly observed in the test group treated for 20 minutes at $121^{\circ}C$. As aresult of reviewing the impact of the P. polymyxa CK-1 culture medium on mushroom mycelial growth, it showed no effect on a variety of mushroom mycelial growth including enoki mushroom and shiitake mushroom.

버섯배지의 발효를 효율적으로 행하면서 버섯의 재배 시 빈번하게 발생하는 푸른곰팡이 병의 원인 균주인 Trichoderma sp. 곰팡이 성장을 억제하는 세균의 분리를 행하였다. 균원시료로부터 1차 분리한 약 200여 균주 중에서 성장속도가 빠르고, SM, AM 및 CM의 평판배지 상에서 clear zone이 뚜렷한 6균주를 2차 분리하였다. 분리한 6균주 중 cellulase, amylase 및 protease의 효소활성이 높고 T. virens와 T. harzianum에 대하여 강한 항균활성을 나타낸 C-1균주를 최종 분리균주로 선정하였다. 분리한 C-1균주는 Bergey's Manual of Systematic Bacteriology에 의한 동정과 16S rDNA 염기서열 분석을 행한 결과 Paenibacillus polymyxa 밝혀져 P. polymyxa CK-1으로 명명하였다. P. polymyxa CK-1균주의 생육조건을 검토한 결과 최적배양온도는 $45^{\circ}C$, 생육을 위한 배지의 최적 pH는 6.0~7.0 범위로 나타났다. T. virens와 T. harzianum 곰팡이의 생육억제를 위한 P. polymyxa CK-1의 배양시간은 22~36시간이 적당하였다. 그리고 P. polymyxa CK-1균주의 24시간째 배양용액을 처리한 petri dish에 두 곰팡이를 각각 접종한 후 10일 동안 방치하여도 곰팡이의 생육은 관찰되지 않았다. P. polymyxa CK-1 균주가 생산한 길항물질의 열안정성을 검토한 결과 $60^{\circ}C$$100^{\circ}C$로 20분 동안 처리한 시험구에서는 두 곰팡이의 균사성장이 전혀 관찰되지 않았지만 $121^{\circ}C$에서 20분 동안 처리한 시험구에서는 약간의 균사성장이 관찰되었다. P. polymyxa CK-1배양액이 버섯균사 생육에 미치는 영향을 검토한 결과 팽이버섯, 표고버섯 등의 다양한 버섯균사 생육에 전혀 영향을 미치지 않는 것으로 나타났다.

Keywords

References

  1. Ali D, Lacroix C. 1995. Characterization of diacetin B. a bacteriocin from Lactococcus lactis subsp. lactis bv diacetylactis UL720. Can. J. Microbiol. 41:832-841. https://doi.org/10.1139/m95-114
  2. Angelini P, Pagiotti R, Granetti B. 2008. Effect of antimicrobial activity of Melaleuca alternifolia essential oil on antagonistic potential of Pleurotus species against Trichoderma harzianum in dual culture. World J. Microbiol. Biotechnol. 24:197-202. https://doi.org/10.1007/s11274-007-9456-x
  3. Benhamou, N, Chet I. 1996. Parasitism of sclerotic of Sclerotium rolfsii by Trichoderma harzianum: ultrastructural and cytochemical aspects of the interaction. Phytopathology 86:405-416. https://doi.org/10.1094/Phyto-86-405
  4. Berridge, VA, Barranova IP, Egorov NS. 1979. Nisin accumulation dynamic in a streptococcus lactis culture. Apple. Biochem, Microbiol. 15:360-362.
  5. Breene WM. 1990. Nutritional and medicinal value of specialty mushrooms. J. Food Protection 53:883-894. https://doi.org/10.4315/0362-028X-53.10.883
  6. Chang ST, Buswel JA, Chiu SW. 1993. Mushroom biology and mushroom products. The Chinese University Press, Hong Kong.
  7. Chet I. 1987. Trichoderma-application, mode of action and potential as a biocontrol agent of soilborne plant pathogenic fungi, p, 137-140. In I. Chet(ed.), Innovative approaches to plant disease control. J. Wiley and Sons, New York, N.Y.
  8. Choi IY, Choi JN, Sharma P, Lee WH. 2010. Isolation and identification of mushroom pathogens from Agrocybe aegerita. Mycobiol. 38:310-315. https://doi.org/10.4489/MYCO.2010.38.4.310
  9. Daba HS, Pacdian JF, Gosselin RE, Simard JH, Lacroix C. 1991. Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides. Appl. Environ. Microbiol. 57: 3450-3455.
  10. Elad Y, Barak R, Chet I, Henis Y, 1983. Ultrastructural studies of the interaction between Trichoderma sp. and plant pathogenic fungi. Phytopathol. 107:168-175. https://doi.org/10.1111/j.1439-0434.1983.tb00064.x
  11. Gal SW, Lee SW. 2002. Development of optimal culture media for the stable production of mushroom. J. Kor. Soc. Agric. Chem. Biotechnol. 45:71-76.
  12. Gerhardt PR, Costilow RN, Nester EW, Wood WA,. Krieg NR, Sneath GB. 1981. Phillipsi Manual of Methods for General Bacteriology, American Society for Microbiology. 35:144-150.
  13. Harman L, Howell CR, Viterbo A, Chet I, Lorito M, 2004. Trichoderma species-opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2:43-56. https://doi.org/10.1038/nrmicro797
  14. Hasan MM, Rahman SME, Kim GH, Abdallah E, Oh DH. 2012. Antagonistic potentiality of Trichoderma harzianum towards seed-borne fungal pathogens of winter wheat cv. protiva in vitro and in vivo. J. Microbiol. Biotechnol. 22:585-591. https://doi.org/10.4014/jmb.1107.07063
  15. Hermosa RA, Viterbo IC, Monte E. 2012. Plant-beneficial effects of Trichoderma and of its genes. Microbiol. 158:17-25. https://doi.org/10.1099/mic.0.052274-0
  16. Hyun SH, Min BH. 2002. Antifungal activity and exoenzyme production of several bacteria antagonistic to Trichoderma spp. causing green mold disease. The Kor. J. of Mycology 30:147-151. https://doi.org/10.4489/KJM.2002.30.2.147
  17. Inbar J, Abramshy D, Cohen D, Chet I. 1994. Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions. Eur. J. Plant Pathol. 100:337-346. https://doi.org/10.1007/BF01876444
  18. Jung JY, Kim JW, Kim YS, Park HM, Lee BH, Choi MS, Yang JK. 2011. Antifungal activity of extracts from Chamaecyparis obtusa and Pseudotsuga menziesii against Trichoderma spp.. J. of Agr. & Life Science 45:1-11.
  19. Kalberer R, Kunsch U. 1974. Amino acid composition of the oyster mushroom (Pleurotus ostreatus). Lebensn U. Technol. 7:242-244.
  20. Kim WG, Weon JY, Seok SJ, Lee KH. 2008. In vitro antagonistic characteristics of Bacillus isolates against Trichoderma spp. and three species of mushrooms. Mycobiology 36:266-269. https://doi.org/10.4489/MYCO.2008.36.4.266
  21. Manzi P, Aguzzi A, Pizzoferrato L. 2007. Nutritional value of mushrooms widely consumed in Italy. Food Chemistry 73:321-325.
  22. Mumpuni A, Sharma HSS, Brown AE. 1998. Effects of metabolites by Trichoderma harzianum biotypes and Agaricus bisporus on their respective growth radii in culture. Appl. Environ. Microbiol. 64:5053-5056.
  23. Nagy A, Manczinger L, Tombcz D, Hatvani L, Gyrfi J, Antal Z, Sajben E, Vgvlgyi C, Kredics L. 2012. Biological control of oyster mushroom green mould disease by antaginistic Bacillus species. Biological Control of Fungal and Bacterial Plant Pathogens, 78:289-293.
  24. Nari NG and Fahy DC. 1972. Bacteria antagonistic to Pseudomonas tolaasii and control of brown blotch of the cultivated mushroom Agaricus bisporus. J. Appl. Bact. 35:439-442. https://doi.org/10.1111/j.1365-2672.1972.tb03720.x
  25. Park SK, Cho YS, Shon MY, Gal SW, Lee SW. 2007. Isolation and cultural characterization of antibacterial substance producing microbes. Kor. J. Food preserv. 14:194-200.
  26. Piva A, Hedadon DR. 1994. Pediocin A, a bacteriocin produced by Pediococcus pentosaceus FBB61. Microbiology. 140, 697-702. https://doi.org/10.1099/00221287-140-4-697
  27. Regliski T, Rodenburg N, Taylor JT, Northcott GL, Chee AA, Spiers TM, Hill RA. 2012. Trichoderma atroviride promotes growth and enhances systemic resistance to Diplodia pinea in radiata pine (pinus radiata) seedlings. Forest Pathology 42:75-78. https://doi.org/10.1111/j.1439-0329.2010.00710.x
  28. Samuels GJ. 2006. Trichoderma: systematics, the sexual state and ecology. Phytopathology 96: 195-206. https://doi.org/10.1094/PHYTO-96-0195
  29. Seaby DA. 1987. Infection of mushroom compost by Trichoderma harzianum. Mushroom J. 179:355-361.
  30. Seo GS. 2001. Mushroom pathogen and its protection. Mushroom 5:17-38.
  31. Shah S, Nasreen S, Sheikh PA, 2012. Cultural and morphological characterization of Trichoderma sp. associated with green mold disease of Pleurotus spp. in Kashmir. Reaearch J. of Microbiol. 7:139-144. https://doi.org/10.3923/jm.2012.139.144
  32. Sneath PHA, Mair NS, Sharpe ME, Holt JG. 1986. Bergey's Manual of Systematic Bacteriology, Williams & Wilkins.
  33. Szczech M, Staniaszek M, Habdas H, Uliski Z, Szmaski J. 2008. Trichoderma spp. - The cause of green mold on Polish mushroom farrms.
  34. Wardle DA, Parkinson D, Waller JE. 1993. Interspecific competitive interactions between pairs of fungal species in natural substrates. Oecologia. 94:165-172. https://doi.org/10.1007/BF00341313
  35. Williams J, Clarkson JM, Mills PR, Cooper RM. 2003. Saprotrophic and mycoparasitic components of aggressiveness of Trichoderma harzianum groups toward the commercial mushroom Agaricus bisporus. Appl. Environ. Microbiol., 69:4192-4199. https://doi.org/10.1128/AEM.69.7.4192-4199.2003
  36. Yoshioka Y, Tabeta R. 1985. Antitumor polysaccharides from P. ostreatus(Fr.) Quel: Isolation and structure of a $\beta$-glucan. Carbohydrate Research 140:93-100.