Browse > Article
http://dx.doi.org/10.5352/JLS.2012.22.7.912

Characterization of Cellulase and Xylanase from Bacillus subtilis NC1 Isolated from Environmental Soil and Determination of Its Genes  

Park, Chang-Su (Department of Food Science and Technology, Catholic University of Daegu)
Kang, Dae-Ook (Department of Biochemistry and Health Science, Changwon National University)
Choi, Nack-Shick (Woori Life Science Co., Ltd.)
Publication Information
Journal of Life Science / v.22, no.7, 2012 , pp. 912-919 More about this Journal
Abstract
A Bacillus sp. strain producing celluase and xylanase was isolated from environmental soil with LB agar plate containing carboxymethylcellulose (CM-cellulose) and beechwood xylan stained with trypan blue as substrates, respectively. Based on the 16S rRNA gene sequence and API 50 CHL test, the strain was identified as B. subtilis and named B. subtilis NC1. The cellulase and xylanase from B. subtilis NC1 exhibited the highest activities for CM-cellulose and beechwood xylan as substrate, respectively, and both enzymes showed the maximum activity at pH 5.0 and $50^{\circ}C$. We cloned and sequenced the genes for cellulase and xylanase from genomic DNA of the B. subtilis NC1 by the shot-gun cloning method. The cloned cellulase and xylanase genes consisted of a 1,500 bp open reading frame (ORF) encoding a 499 amino acid protein with a calculated molecular mass of 55,251 Da and a 1,269 bp ORF encoding a 422 amino acid protein with a calculated molecular mass of 47,423 Da, respectively. The deduced amino acid sequences from the genes of cellulase and xylanase showed high identity with glycosyl hydrolases family (GH) 5 and 30, respectively.
Keywords
Bacillus subtilis; screening; cellulase; xylanase; characterization; cloning;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Beguin, P. and Aubert, J. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25-58.   DOI   ScienceOn
2 Cai, S., Li, J., Hu, F., Zhang, K., Luo, Y., Janto, B., Boissy, R., Ehrlich, G. and Dong, Y. 2010. Cellulosilyticum ruminicola, a newly described rumen bacterium that possesses redundant fibrolytic-protein-encoding genes and degrades lignocellulose with multiple carbohydrate- borne fibrolytic enzymes. Appl. Environ. Microbiol. 76, 3818-3824.   DOI   ScienceOn
3 Cuyvers, S., Dornez, E., Moers, K., Pollet, A., Delcour, J. and Courtin, C. 2011. Evaluation of the xylan breakdown potential of eight mesophilic endoxylanases. Enzyme Microb. Technol. 49, 305-311.   DOI
4 de Almeida, M. N., Guimarães, V. M., Bischoff, K. M., Falkoski, D. L., Pereira, O. L., Gonçalves, D. S. and de Rezende, S. T. 2011. Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis. Appl. Biochem. Biotechnol. 165, 594-610.   DOI   ScienceOn
5 Diaz, I., Donoso-Bravo, A. and Fdz-Polanco, M. 2011. Effect of microaerobic conditions on the degradation kinetics of cellulose. Bioresour Technol. 102, 10139-10142.   DOI   ScienceOn
6 Hideno, A., Inoue, H., Tsukahara, K., Yano, S., Fang, X., Endo, T. and Sawayama, S. 2010. Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Enzyme Microb. Technol. 48, 162-168.
7 Hu, J., Arantes, V. and Saddler, J. N. 2011. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect. Biotechnol. Biofuels. 4, 36.   DOI   ScienceOn
8 Jung, K. H., Chun, Y. C., Lee, J. C., Kim, J. H. and Yoon, K. H. 1996. Cloning and expression of a Bacillus sp. 79-23 cellulase gene. Biotechnol. Lett. 18, 1077-1082.   DOI   ScienceOn
9 Kanna, M., Yano, S., Inoue, H., Fujii, T. and Sawayama, S. 2011. Enhancement of ${\beta}$-xylosidase productivity in cellulase producing fungus Acremonium cellulolyticus. AMB Express. 1, 15.   DOI
10 Kataria, R. and Ghosh, S. 2011. Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production. Bioresour. Technol. 102, 9970-9975.   DOI   ScienceOn
11 Ma, X. D., Ke, T., Xiong, L., Yan, H. and Ma, L. X. 2007. A new plate method for screening of polysaccharide-degrading enzymes and their producing microorganisms. Wei Sheng Wu Xue Bao. 47, 1102-1104.
12 Metz, B., Seidl-Seiboth, V., Haarmann, T., Kopchinskiy, A., Lorenz, P., Seiboth, B. and Kubicek, C. P. 2011. Expression of biomass-degrading enzymes is a major event during conidium development in Trichoderma reesei. Eukaryot Cell 10, 1527-1535.   DOI
13 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing. Anal. Chem. 31, 426-428.   DOI
14 Peng, L. and Gutterson, N. 2011. Energy crop and biotechnology for biofuel production. J. Intergr. Plant Biol. 53, 253-256.   DOI   ScienceOn
15 Tomme, P., Warren, R. A. and Gilkes, N. R. 1995. Cellulose hydrolysis by bacteria a fungi. Adv. Microbial. Physiol. 37, 1-81.   DOI
16 Sambrook, J., Brent, R. and Kingston, T. 1987. Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York.
17 Silva, G. G., Couturier, M., Berrin, J. G., Buléon, A. and Rouau, X. 2012. Effects of grinding processes on enzymatic degradation of wheat straw. Bioresour Technol. 103, 192-200.   DOI
18 Xie, G. and Peng, L. 2011. Genetic engineering of energy crops: a strategy for biofuel production in China. J. Intergr. Plant Biol. 53, 143-150.   DOI   ScienceOn
19 Suzuki, T., Ibata, K., Hatsu, M., Takamizawa, K. and Kawai, K. 1997. Cloning and expression of a 58-kDa xylanase VI gene (xynD) of Aeromonas caviae ME-1 in Escherichia coli which is not categorized as a family F or family G xylanase. J. Ferment. Bioeng. 84, 86-89.   DOI
20 Várnai, A., Huikko, L., Pere, J., Siika-Aho, M. and Viikari, L. 2011. Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour Technol. 102, 9096-9104.   DOI
21 Yang, D., Weng, H., Wang, M., Xu, W., Li, Y. and Yang, H. 2010. Cloning and expression of a novel thermostable cellulase from newly isolated Bacillus subtilis strain I15. Mol. Biol. Rep. 37, 1923-1929.   DOI
22 Yu, L., Z. Chen, X., Tong, X., Li, K. and Li, W. W. 2012. Anaerobic degradation of microcrystalline cellulose: Kinetics and micro-scale structure evolution. Chemosphere 86, 348-353.   DOI
23 Zhang, Y., Han, B. and Ezeji, T. C. 2012. Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. N. Biotechnol. 29, 345-351.   DOI
24 Zhang, J., Tuomainen, P., Siika-Aho, M. and Viikari, L. 2011. Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis. Bioresour Technol. 102, 9090-9095.   DOI
25 Zhou, C. H., Xia, X., Lin, C. X., Tong, D. S. and Beltramini, J. 2011. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 40, 5588-5617.   DOI
26 Zvidzai, C. J., Hatti-Kaul, R., Sithole-Niang, I., Zvauya, R. and Delgado, O. 2002. Cloning, sequencing and expression of an endo-b-1,4-glucanase (celG) gene of a Bacillus subtilis CHZ1. J. Appl. Sci. South Afr. 8, 65-75.
27 Zhou, J., Bao, L., Chang, L., Liu, Z., You, C. and Lu, H. 2012. Beta-xylosidase activity of a GH3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans. Lett. Appl. Microbiol. 54, 79-87.   DOI
28 Zhou, J., Bao, L., Chang, L., Zhou, Y. and Lu, H. 2012. Biochemical and kinetic characterization of GH43 ${\beta}$-D: -xylosidase/${\alpha}$-L: -arabinofuranosidase and GH30 ${\alpha}$-L: -arabinofuranosidase/${\beta}$-D: -xylosidase from rumen metagenome. J. Ind. Microbiol. Biotechnol. 39, 143-152.   DOI