• Title/Summary/Keyword: bounded

Search Result 2,241, Processing Time 0.023 seconds

BOUNDEDNESS IN FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Goo, Yoon Hoe
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.347-359
    • /
    • 2016
  • In this paper, we show that the solutions to perturbed functional differential system $$y^{\prime}=f(t,y)+{\int_{t_0}^{t}}g(s,y(s),Ty(s))ds$$, have a bounded properties. To show the bounded properties, we impose conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s),Ty(s))ds$ and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of $t_{\infty}$-similarity.

BOUNDED OSCILLATION FOR SECOND-ORDER NONLINEAR DELAY DIFFERENTIAL EQUATIONS

  • Song, Xia;Zhang, Quanxin
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.447-454
    • /
    • 2014
  • Two necessary and sufficient conditions for the oscillation of the bounded solutions of the second-order nonlinear delay differential equation $$(a(t)x^{\prime}(t))^{\prime}+q(t)f(x[{\tau}(t)])=0$$ are obtained by constructing the sequence of functions and using inequality technique.

MULTIPLICATION OPERATORS ON WEIGHTED BANACH SPACES OF A TREE

  • Allen, Robert F.;Craig, Isaac M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.747-761
    • /
    • 2017
  • We study multiplication operators on the weighted Banach spaces of an infinite tree. We characterize the bounded and the compact operators, as well as determine the operator norm. In addition, we determine the spectrum of the bounded multiplication operators and characterize the isometries. Finally, we study the multiplication operators between the weighted Banach spaces and the Lipschitz space by characterizing the bounded and the compact operators, determining estimates on the operator norm, and showing there are no isometries.

CHARACTERIZATIONS OF BOUNDED VECTOR MEASURES

  • Ronglu, Li;Kang, Shin-Min
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.209-215
    • /
    • 2000
  • Let X be a locally convex space. A series of clearcut characterizations for the boundedness of vector measure $\mu{\;}:{\;}\sum\rightarrow{\;}X$ is obtained, e.g., ${\mu}$ is bounded if and only if ${\mu}(A_j){\;}\rightarrow{\;}0$ weakly for every disjoint $\{A_j\}{\;}\subseteq{\;}\sum$ and if and only if $\{\frac{1}{j^j}{\mu}(A_j)\}^{\infty}_{j=1}$ is bounded for every disjoint $\{A_j\}{\;}\subseteq{\;}\sum$.

  • PDF

UNIQUENESS OF SOLUTIONS OF A CERTAIN NONLINEAR ELLIPTIC EQUATION ON RIEMANNIAN MANIFOLDS

  • Lee, Yong Hah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1577-1586
    • /
    • 2018
  • In this paper, we prove that if every bounded ${\mathcal{A}}$-harmonic function on a complete Riemannian manifold M is asymptotically constant at infinity of p-nonparabolic ends of M, then each bounded ${\mathcal{A}}$-harmonic function is uniquely determined by the values at infinity of p-nonparabolic ends of M, where ${\mathcal{A}}$ is a nonlinear elliptic operator of type p on M. Furthermore, in this case, every bounded ${\mathcal{A}}$-harmonic function on M has finite energy.

BOUNDED OSCILLATION OF SECOND ORDER UNSTABLE NEUTRAL TYPE DIFFERENCE EQUATIONS

  • Thandapani, E.;Arul, R.;Raja, P.S.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.79-90
    • /
    • 2004
  • In this paper the authors present sufficient conditions for all bounded solutions of the second order neutral difference equation ${\Delta}^2(y_n\;-\;py_{n-{\kappa}})\;-\;q_nf(y_{n-e})\;=\;0,\;n\;{\in}\;N$ to be oscillatory. Examples are provided to illustrate the results.

THE PETTIS INTEGRABILITY OF BOUNDED WEAKLY MEASURABLE FUNCTIONS ON FINITE MEASURE SPACES

  • Kim, Kyung-Bae
    • The Pure and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • Since the concept of Pettis integral was introduced in 1938 [10], the Pettis integrability of weakly measurable functions has been studied by many authors [5, 6, 7, 8, 9, 11]. It is known that there is a bounded function that is not Pettis integrable [10, Example 10. 8]. So it is natural to raise the question: when is a bounded function Pettis integrable\ulcorner(omitted)

  • PDF

ON BOUNDED SOLUTIONS OF PEXIDER-EXPONENTIAL FUNCTIONAL INEQUALITY

  • Chung, Jaeyoung;Choi, Chang-Kwon;Lee, Bogeun
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.129-136
    • /
    • 2013
  • Let G be a commutative group which is 2-divisible, $\mathbb{R}$ the set of real numbers and $f,g:G{\rightarrow}\mathbb{R}$. In this article, we investigate bounded solutions of the Pexider-exponential functional inequality ${\mid}f(x+y)-f(x)g(y){\mid}{\leq}{\epsilon}$ for all $x,y{\in}G$.

ON NEARNESS SPACE

  • Lee, Seung On;Choi, Eun Ai
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.8 no.1
    • /
    • pp.19-27
    • /
    • 1995
  • In 1974 H.Herrlich invented nearness spaces, a very fruitful concept which enables one to unify topological aspects. In this paper, we introduce the Lindel$\ddot{o}$f nearness structure, countably bounded nearness structure and countably totally bounded nearness structure. And we show that (X, ${\xi}_L$) is concrete and complete if and only if ${\xi}_L={\xi}_t$ in a symmetric topological space (X, t). Also we show that the following are equivalent in a symmetric topological space (X, t): (1) (X, ${\xi}_L$) is countably totally bounded. (2) (X, ${\xi}_t$) is countably totally bounded. (3) (X, t) is countably compact.

  • PDF