CHARACTERIZATIONS OF BOUNDED VECTOR MEASURES

LI RONGLU AND SHIN MIN KANG

ABSTRACT. Let X be a locally convex space. A series of clearcut characterizations for the boundedness of vector measure $\mu: \Sigma \to X$ is obtained, e.g., μ is bounded if and only if $\mu(A_j) \to 0$ weakly for every disjoint $\{A_j\} \subseteq \Sigma$ and if and only if $\{\frac{1}{jj}\mu(A_j)\}_{j=1}^{\infty}$ is bounded for every disjoint $\{A_j\} \subseteq \Sigma$.

Let Σ be an algebra of subsets of a set Ω and X a locally convex space with the dual X'. A function $\mu: \Sigma \to X$ is said to be a measure if $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever $A, B \in \Sigma$ and $A \cap B = \emptyset$. A measure $\mu: \Sigma \to X$ is bounded if $\{\mu(A): A \in \Sigma\}$ is a bounded subset of X. If X is a Banach space, then $\mu: \Sigma \to X$ is bounded if and only if μ is of bounded semivariation, i.e., $\|\mu\|(\Omega) = \sup\{\|\sum_{A_j \in \Pi} \epsilon_j \mu(A_j)\|: \Pi$ is a finite Σ -partition of Ω , $|\epsilon_j| \leq 1\} < +\infty$ ([3], p. 4).

A measure $\mu: \Sigma \to X$ is said to be *strongly bounded* if $\mu(A_j) \to 0$ for every pairwise disjoint $\{A_j\} \subseteq \Sigma$ ([3], p. 9). Strongly bounded measures are bounded but the converse is not true.

EXAMPLE 1. Let $\Sigma = \{A \subseteq \mathbb{N} : A \text{ is finite or } \mathbb{N} \setminus A \text{ is finite} \}$ and $\mu : \Sigma \to c_0$, $\mu(A) = \chi_A$ if A is finite and $\mu(A) = -\chi_{\mathbb{N} \setminus A}$ if $\mathbb{N} \setminus A$ is finite, where χ_B is the characteristic function of $B \subseteq \mathbb{N}$. Then μ is a bounded measure but μ is not strongly bounded: $\mu(\{j\}) = \chi_{\{j\}} \nrightarrow 0$ as $j \to +\infty$.

If X is a Banach space, then a measure $\mu: \Sigma \to X$ is of bounded variation if $|\mu|(\Omega) = \{\Sigma_{A \in \Pi} ||\mu(A)|| : \Pi \text{ is a finite } \Sigma\text{-partition of } \Omega\} < +\infty$ ([3], p. 4).

Received May 14, 1998. Revised October 12, 1999.

²⁰⁰⁰ Mathematics Subject Classification: 46A05.

Key words and phrases: vector measure, strong boundedness, semivariation.

Li Ronglu and Shin Min Kang

For the variation boundedness and the strong boundedness, we have the following characterizations.

THEOREM 2. Let Σ be an algebra of subsets of a set Ω and X a Banach space. Then the following (A) and (B) hold.

- (A) A measure $\mu: \Sigma \to X$ is of bounded variation if and only if $\sum_{j=1}^{\infty} \|\mu(A_j)\| < +\infty$ for every pairwise disjoint sequence $\{A_j\} \subseteq \Sigma$ ([8], Lemma 4.1).
- (B) A measure $\mu: \Sigma \to X$ is strongly bounded if and only if μ is strongly additive, i.e., for every pairwise disjoint sequence $\{A_j\} \subseteq \Sigma$, the series $\sum_{j=1}^{\infty} \mu(A_j)$ converges ([3], p. 9).

However, there is no any remarkable description for the boundedness of vector measures, though there is many uniform boundedness results for families of bounded vector measures ([1]-[3], [6], [7]).

In this note, we will show a series of clearcut characterizations for the boundedness of vector measures.

Throughout this note, Σ will denote an algebra of subsets of a set Ω .

THEOREM 3. Let X be a locally convex space with the dual X'. For a measure $\mu: \Sigma \to X$, the following conditions are equivalent.

- (1) μ is bounded, i.e., $\{\mu(A) : A \in \Sigma\}$ is bounded.
- (2) For every pairwise disjoint $\{A_j\}\subseteq \Sigma$ and $\{t_j\}\in c_0$, i.e., $t_j\to 0$ in \mathbb{C} , the sequence $\{\sum_{j=1}^n t_j\mu(A_j)\}_{n=1}^{\infty}$ is Cauchy.
- (3) For every pairwise disjoint $\{A_j\}\subseteq \Sigma$, the series $\sum_{j=1}^{\infty}\mu(A_j)$ is weakly unconditionally Cauchy, i.e., $\sum_{j=1}^{\infty}|f(\mu(A_j))|<+\infty$ for all $f\in X'$.
 - (4) For every pairwise disjoint $\{A_j\}\subseteq\Sigma$, $\mu(A_j)\to 0$ weakly.
 - (5) For every pairwise disjoint $\{A_j\}\subseteq \Sigma$, $\frac{1}{j^j}\mu(A_j)\to 0$ weakly.
 - (6) For every pairwise disjoint $\{A_j\}\subseteq\Sigma$, $\{\frac{1}{j^j}\mu(A_j)\}_{j=1}^{\infty}$ is bounded.

Proof. (1) \Rightarrow (2). Suppose that (1) holds. Then for every $f \in X'$, we have that $\sup_{A \in \Sigma} |f(\mu(A))| < +\infty$. Let $A_j \in \Sigma$, $A_i \cap A_j = \emptyset$ $(i \neq j)$ and $t_j \to 0$ in \mathbb{C} . We claim that $K = \{\sum_{j \in \Delta} b_j \mu(A_j) : \Delta \subseteq \mathbb{N} \text{ finite, } |b_j| \leq 1 \text{ for all } j\}$ is bounded. In fact, letting $\Delta_1 = \{j \in \mathbb{N} : \operatorname{Re} f(\mu(A_j)) > 0\}$, $\Delta_2 = \{j \in \mathbb{N} : \operatorname{Re} f(\mu(A_j)) < 0\}$, $\Delta_3 = \{j \in \mathbb{N} : \operatorname{Im} f(\mu(A_j)) > 0\}$ and

$$\Delta_4 = \{j \in \mathbb{N} : \operatorname{Im} f(\mu(A_j)) < 0\}$$
 for every $f \in X'$, we have that
$$\left| f\left(\sum_{j \in \Lambda} b_j \mu(A_j)\right) \right| \leq \sum_{j \in \Lambda} |f(\mu(A_j))|$$

$$\leq \operatorname{Re} f \left(\mu \left(\bigcup_{j \in \Delta \cap \Delta_1} A_j \right) \right) - \operatorname{Re} f \left(\mu \left(\bigcup_{j \in \Delta \cap \Delta_2} A_j \right) \right)$$

$$+ \operatorname{Im} f \left(\mu \left(\bigcup_{j \in \Delta \cap \Delta_3} A_j \right) \right) - \operatorname{Im} f \left(\mu \left(\bigcup_{j \in \Delta \cap \Delta_4} A_j \right) \right)$$

$$\leq 4 \sup_{A \in \Sigma} |f(\mu(A))|, \ \forall \Delta \subseteq \mathbb{N} \ \text{finite}, \ |b_j| \leq 1, \ \forall j.$$

This shows that K is weakly bounded and hence bounded in X by the Mackey theorem.

Now let $\alpha_k = \sup\{|t_j| : j \geq k\}$. Then $\alpha_k \to 0$. Without loss of generality, assume that $t_j \neq 0$ for infinitely many j and hence $\alpha_k > 0$ for all k. Let U be a neighborhood of $0 \in X$. Then there is a $\delta > 0$ such that

$$lpha \sum_{j \in \Delta} b_j \mu(A_j) \in U ext{ for all } |lpha| \leq \delta, \quad \sum_{j \in \Delta} b_j \mu(A_j) \in K.$$

Thus, there is a $k_0 \in \mathbb{N}$ such that

$$\sum_{j=k}^m t_j \mu(A_j) = \alpha_k \sum_{j=k}^m (t_j/\alpha_k) \mu(A_j) \in U$$

for all $m \ge k > k_0$, i.e., $\{\sum_{j=1}^n t_j \mu(A_j)\}_{n=1}^{\infty}$ is Cauchy in X.

(2) \Rightarrow (3). If $A_j \in \Sigma$, $A_i \cap A_j = \emptyset$ $(i \neq j)$, then (2) implies that the series $\sum_{j=1}^{\infty} t_j f(\mu(A_j))$ converges for every $f \in X'$ and $\{t_j\} \in c_0$. Therefore, $\sum_{j=1}^{\infty} |f(\mu(A_j))| < +\infty$ for all $f \in X'$.

$$(3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6)$$
 is trivial.

(6) \Rightarrow (1). Suppose that (6) holds but $\{\mu(A) : A \in \Sigma\}$ is not bounded. Then there is an $f \in X'$ such that $\sup_{A \in \Sigma} |f(\mu(A))| = +\infty$. Pick an $A_1 \in \Sigma$. Then

$$\sup_{A\in\Sigma,A\subseteq A_1}|f(\mu(A))|=+\infty\quad\text{or}\quad\sup_{A\in\Sigma,A\subseteq\Omega\setminus A_1}|f(\mu(A))|=+\infty.$$

Li Ronglu and Shin Min Kang

In fact, if $\sup_{A\in\Sigma,A\subseteq A_1}|f(\mu(A))|=M<+\infty$ and $\sup_{A\in\Sigma,A\subseteq\Omega\setminus A_1}|f(\mu(A))|=N<+\infty$, then

$$|f(\mu(A))| \le |f(\mu(A \cap A_1))| + |f(\mu(A \cap (\Omega \setminus A_1)))|$$

< $M + N$

for all $A \in \Sigma$ and hence $\sup_{A \in \Sigma} |f(\mu(A))| \le M + N < +\infty$, but this is impossible.

Now let $B_1 = A_1$ if $\sup_{A \in \Sigma, A \subseteq A_1} |f(\mu(A))| = +\infty$ and, otherwise, let $B_1 = \Omega \setminus A_1$. Then $\sup_{A \in \Sigma, A \subseteq B_1} |f(\mu(A))| = +\infty$ and hence there is an $A_2 \subseteq B_1$ $(A_2 \in \Sigma)$ such that

$$|f(\mu(A_2))| > 2^2 + |f(\mu(A_1))| + |f(\mu(\Omega \setminus A_1))|.$$

Let $B_2=A_2$ if $\sup_{A\in\Sigma,A\subseteq A_2}|f(\mu(A))|=+\infty$ and, otherwise, let $B_2=B_1\backslash A_2$. Then $B_2\subseteq B_1$ and $\sup_{A\in\Sigma,A\subseteq B_2}|f(\mu(A))|=+\infty$. We claim that $|f(\mu(B_1\backslash B_2))|>2^2$. In fact, if $B_1=A_1$ and $B_2=A_2$, then $A_2\subseteq A_1$ and hence

$$|f(\mu(B_1 \backslash B_2))| = |f(\mu(A_1)) - f(\mu(A_2))|$$

$$\geq |f(\mu(A_2))| - |f(\mu(A_1))| > 2^2;$$

if $B_1 = A_1$ and $B_2 = B_1 \setminus A_2$, then $B_2 = A_1 \setminus A_2$, $A_2 \subseteq A_1$ and hence

$$|f(\mu(B_1\backslash B_2))| = |f(\mu(A_2))| > 2^2;$$

if $B_1 = \Omega \backslash A_1$ and $B_2 = A_2$, then $A_2 \subseteq \Omega \backslash A_1$ and hence

$$|f(\mu(B_1 \backslash B_2))| = |f(\mu(\Omega \backslash A_1)) - f(\mu(A_2))|$$

$$\geq |f(\mu(A_2))| - |f(\mu(\Omega \backslash A_1)) > 2^2;$$

if $B_1 = \Omega \setminus A_1$ and $B_2 = B_1 \setminus A_2$, then $B_2 \subseteq B_1$, $A_2 \subseteq B_1$ and hence

$$|f(\mu(B_1 \backslash B_2))| = |f(\mu(A_2))| > 2^2.$$

Now observing $\sup_{A \in \Sigma, A \subseteq B_2} |f(\mu(A))| = +\infty$, we have an $A_3 \subseteq B_2$ $(A_3 \in \Sigma)$ such that

$$|f(\mu(A_3))| > 3^3 + |f(\mu(A_2))| + |f(\mu(B_1 \setminus A_2))|.$$

Let $B_3 = A_3$ if $\sup_{A \in \Sigma, A \subseteq A_3} |f(\mu(A))| = +\infty$ and, otherwise, let $B_3 = B_2 \setminus A_3$. Then $B_3 \subseteq B_2$, $\sup_{A \in \Sigma, A \subseteq B_3} |f(\mu(A))| = +\infty$ and $f(\mu(B_2 \setminus B_3))| > 3^3$.

Continuing this construction inductively, we obtain a sequence $\{B_j\}$ in Σ such that

$$B_1 \supseteq B_2 \supseteq B_3 \supseteq \cdots$$
 and $|f(\mu(B_i \setminus B_{i+1}))| > (j+1)^{j+1}$

for all j. However, $\{B_j \setminus B_{j+1}\}_{j=1}^{\infty}$ is a pairwise disjoint sequence in Σ and

$$\left|\frac{1}{j^j}f(\mu(B_j\backslash B_{j+1}))\right|>\frac{(j+1)^{j+1}}{j^j}>j+1$$

for all j, i.e., $\left\{\frac{1}{j^j}\mu(B_j\backslash B_{j+1})\right\}_{j=1}^{\infty}$ is not bounded. This contradicts (6).

If a locally convex space X contains no copy of $(c_0, \|\cdot\|_{\infty})$, then X has a series of very nice properties, e.g., every continuous linear operator $T: c_0 \to X$ is both compact and sequentially compact, i.e., for every bounded $B \subseteq c_0$, $\overline{T(B)}$ is both compact and sequentially compact ([5], Theorem 4). Theorem 3 implies the following characterization of the c_0 -absence.

COROLLARY 4. A sequentially complete locally convex space X contains no copy of $(c_0, \|\cdot\|_{\infty})$ if and only if every bounded X-valued measure is strongly additive.

Proof. As was stated in Example 1, if X contains a copy of $(c_0, \|\cdot\|_{\infty})$, then there exists a bounded measure which is not strongly additive.

Suppose that X contains no copy of $(c_0, \|\cdot\|_{\infty})$ and $\mu: \Sigma \to X$ is a bounded measure. Let $\{A_j\}$ be a pairwise disjoint sequence in Σ . By Theorem 3, the series $\sum_{j=1}^{\infty} \mu(A_j)$ is weakly unconditionally Cauchy and hence the series $\sum_{j=1}^{\infty} \mu(A_j)$ converges because X contains no copy of $(c_0, \|\cdot\|_{\infty})$ ([5], Theorem 4). This shows that μ is strongly additive.

Let X and Y be Banach spaces. For a vector measure $\mu: \Sigma \to X$ and $A \in \Sigma$, the semivariation $\|\mu\|(A)$ is defined by

(I)
$$\|\mu\|(A) = \sup \left\{ \left\| \sum_{B \in \Pi} \epsilon_B \mu(B) \right\| : \Pi \text{ is a finite} \right.$$

$$\Sigma \text{-partition of } A, \epsilon_B \in \mathbb{C}, \ |\epsilon_B| \le 1 \}$$
 ([3], p. 4).

This definition is reasonable because $\|\mu\|(\Omega) < +\infty$ if and only if μ is bounded, i.e., $\{\mu(A) : A \in \Sigma\}$ is bounded. However, there is another definition of semivariation for operator-valued measure $\mu : \Sigma \to L(X,Y)$ and $A \in \Sigma$ as follows:

(II)
$$\begin{split} \|\mu\|(A) &= \sup \left\{ \left\| \sum_{B \in \Pi} \mu(B)(f(B)) \right\| : \Pi \text{ is a finite} \right. \\ &\qquad \qquad \Sigma\text{-partition of } A, f \in X^{\Sigma}, \|f(\cdot)\| \leq 1 \right\} \quad ([8], \, \S 4). \end{split}$$

According to the semivariation (II), $\mu: \Sigma \to L(X,Y)$ is of bounded semivariation if and only if for every pairwise disjoint $\{A_j\} \subseteq \Sigma$ the series $\sum_{j=1}^{\infty} \mu(A_j)$ (x_j) converges for every $\{x_j\} \in c_0(X)$, i.e., $x_j \to 0$ in X ([8], Theorem 4.2).

We would like to show that semivariation (I) and (II) are different for operator-valued measures, in general.

THEOREM 5. Let X and Y be Banach spaces. If X is infinite-dimensional, then there exists a measure $\mu: 2^{\mathbb{N}} \to L(X,Y)$ such that μ is strongly additive and hence μ is bounded, i.e., μ is of bounded semivariation in the sense of (I) but μ is not of bounded semivariation in the sense of (II).

Proof. By Theorem 4 of [4], there exists a sequence $\{T_j\} \subseteq L(X,Y)$ such that the series $\sum_{j=1}^{\infty} T_j$ is subseries convergent in the operator norm but $\sup_{m} \|\sum_{j=1}^{m} T_j(x_j)\| = +\infty$ for some $\{x_j\} \in c_0(X)$. Define $\mu: 2^{\mathbb{N}} \to L(X,Y)$ by $\mu(A) = \sum_{j\in A} T_j$ for $A \subseteq \mathbb{N}$. Then μ is strongly additive because the series $\sum_{j=1}^{\infty} T_j$ is also unconditionally convergent ([5]). However, μ is not of bounded semivariation in the sense of (II) because the series $\sum_{j=1}^{\infty} \mu(\{j\})(x_j) = \sum_{j=1}^{\infty} T_j(x_j)$ diverges for some $\{x_j\} \in c_0(X)$.

Characterizations of bounded vector measures

ACKNOWLEDGEMENT. The second author wishes to acknowledge the financial support of the Korea Research Foundation made in the program year of 1998, Project No. 1998-015-D00020.

References

- [1] P. Antosik and C. Swartz, The Nikodym Boundedness Theorem and the Uniform Boundedness Principle, Lecture Notes in Math., 1033, Springer-Verlag, Heidelberg, 1983.
- [2] _____, Matrix Methods in Analysis, Lecture Notes in Math., 1113, Springer-Verlag, Heidelberg, 1985.
- [3] J. Diestel and J. Uhl, Vector Measures, Amer. Math. Soc., Providence, 1977.
- [4] Li Ronglu, Cui Chengri and Min-Hyung Cho, Improvements of Thorp-Rolewicz theorems on operator series, Bull. Korean Math. Soc. 35 (1998), no. 1, 75-82.
- [5] Li Ronglu and Bu Qingying, Locally convex spaces containing no copy of c₀, J.
 Math. Anal. Appl. 172 (1993), no. 1, 205-211.
- [6] C. Swartz, The evolution of the uniform boundedness principle, Math. Chron. 19 (1990), 1-18.
- [7] ______, Infinite Matrices and the Gliding Hump, World Sci., Singapore-New Jersey-London-HongKong, 1996.
- [8] B. L. D. Thorp, Sequential-evolution convergence, J. London Math. Soc. 44 (1969), 201-209.

LI RONGLU, DEPARTMENT OF MATHEMATICS, HARBIN INSTITUTE OF TECHNOLOGY, HARBIN 150001, PEOPLE'S REPUBLIC OF CHINA

SHIN MIN KANG, DEPARTMENT OF MATHEMATICS, GYEONGSANG NATIONAL UNI-VERSITY, CHIN-JU 660-701, KOREA *E-mail*: smkang@nongae.gsnu.ac.kr