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CHARACTERIZATIONS OF
BOUNDED VECTOR MEASURES

Li RONGLU AND SHIN MIN KANG

ABSTRACT. Let X be a locally convex space. A series of clearcut
characterizations for the boundedness of vector measure p: X — X
is obtained, e.g., p is bounded if and only if p(A4;) — 0 weakly for
every disjoint {4;} C T and if and only if { jiju(Aj)};.";l is bounded
for every disjoint {A;} C X.

Let ¥ be an algebra of subsets of a set {2 and X a locally convex
space with the dual X’. A function p: ¥ — X is said to be a measure
if W(AU B) = u(A) + u(B) whenever A,B € L and ANB =0. A
measure p : X — X is bounded if {#:(A) : A € X} is a bounded subset
of X. If X is a Banach space, then p : ¥ — X is bounded if and only if
 is of bounded semivariation, i.e., ||u|[(22) = sup{|| ZAjen eip(Aj)] :
II is a finite E-partition of , |¢;| < 1} < 400 ([3], p. 4).

A measure p : ¥ — X is said to be strongly bounded if p1(A;) — 0 for
every pairwise disjoint {A4;} C Z ([3], p.9). Strongly bounded measures
are bounded but the converse is not true.

EXAMPLE 1. Let ¥ = {A C N : A is finite or N\A4 is finite} and
B % — co, w(A) = xa if A is finite and p(A) = —xma if N\A is
finite, where xp is the characteristic function of B C N. Then u is a
bounded measure but u is not strongly bounded: u({j}) = x{;3 » 0
as j — +oo.

If X is a Banach space, then a measure 4 : ¥ — X is of bounded
variation if |p|(Q) = {Zaen|lu(A4)| : II is a finite L-partition of O} <
+00 ([3], p. 4).
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For the variation boundedness and the strong boundedness, we have
the following characterizations.

THEOREM 2. Let ¥ be an algebra of subsets of a set  and X a
Banach space. Then the following (A) and (B) hold.

(A) A measure p : £ — X is of bounded variation if and only if
352 (A5)]l < +oo for every pairwise disjoint sequence {A;} C T
([8], Lemma 4.1).

(B) A measure i : £ — X is strongly bounded- if and only if p is
strongly additive, i.e., for every pairwise disjoint sequence {A;} C %,
the series Y22 p(A;) converges ([3], p.9).

However, there is no any remarkable description for the boundedness
of vector measures, though there is many uniform boundedness results
for families of bounded vector measures ([1]-[3], [6], [7]).

In this note, we will show a series of clearcut characterizations for
the boundedness of vector measures.

Throughout this note, ¥ will denote an algebra of subsets of a set (2.

THEOREM 3. Let X be a locally convex space with the dual X'. For
a measure i : ¥ — X, the following conditions are equivalent.

(1) p is bounded, i.e., {u(A): A€ X} is bounded.

(2) For every pairwise disjoint {A;} C ¥ and {t;} € co, i.e., t; = 0
in C, the sequence {}__, t;u(A;)}5%, is Cauchy.

(3) For every pairwise disjoint {A;} C ¥, the series 3~ u(A;)
is weakly unconditionally Cauchy, i.e., 3.2, |f(u(A;))| < +oo for all
feX'.

(4) For every pairwise disjoint {A;} C X, u(A;) — 0 weakly.

(5) For every pairwise disjoint {A;} C X, %u(A;) — 0 weakly.

(6) For every pairwise disjoint {A;} C %, {711'“(‘41')};11 is bounded.

Proof. (1)=(2). Suppose that (1) holds. Then for every f € X', we
have that sup sc 5, | f(1(4))] < +00. Let A; € X, A;NA; =0 (i # j) and
t; — 0in C. We claim that K = {3 ;- bjn(4;) : A C N finite, |bj] <
1 for all j} is bounded. In fact, letting Ay = {j € N : Ref(u(4;)) > 0},
Ay = {j € N: Ref(1(4;)) < 0}, Az = {j € N: Imf(n(4;)) > 0} and
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Ay ={j € N:Imf(u(4;)) < 0} for every f € X', we have that

’f(zbjumj))[ < 3 I (A

jeAa JEA

cnao(, 4, 4)) (Y, )
(o 4)) o, )

< 4sup |f(u(A))], VA C N finite, |b;| < 1, Vj.
A€z

This shows that K is weakly bounded and hence bounded in X by the
Mackey theorem.

Now let ax = sup{[t;| : 7 > k}. Then o — 0. Without loss of
generality, assume that ¢; # 0 for infinitely many j and hence ayx > 0
for all k. Let U be a neighborhood of 0 € X. Then thereisa § > 0
such that

a biu(4;) €U foralllal <46, Y bju(4;) € K.
Jj€A JjEA
Thus, there is a kg € N such that
m m
D tim(Ag) = en Y (ti/on)u(4;) € U
j=k i=k
for all m > k > ko, ie., {377 ; tju(4;)}32, is Cauchy in X.

(2)=(3). f A; € =, A;nA; =0 (i # 7), then (2) implies that
the series 3 7, t; f(u(A;)) converges for every f € X’ and {t;} € co.
Therefore, 352, |f(1(4;))] < +oo for all f € X'

(3)=(4)=(5)=(6) is trivial.

(6)=>(1). Suppose that (6) holds but {u(4) : A € £} is not bounded.
Then there is an f € X’ such that sup ¢y |f(u(4))| = +o0o. Pick an
A; € Z. Then

sup |f(u(A))| =400 or sup  |f(p(A4))] = +oo.
AET,ACA, AES,ACO\A,
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In fact, if sup e aca, [F(1(A))| = M < 400 and sup4es, acova,
|f((A))] = N < +oo, then

|f ((A))] < 1f (u(A N Ar))| + | (u(A N (Q\A1)))]
<M+N

for all A € ¥ and hence sup 4¢5 | f(#(A))] < M + N < +oo, but this is
impossible.

Now let By = A if supsexn 4ca, If(1(A4))] = +oo and, otherwise,
let By = Q\A;. Then supacs acp, |f(1(A))| = +oo and hence there
is an A2 C B; (A2 € X) such that

|f (1(A2))] > 22 + | (u(A)| + |f (1(@\AD)]-

Let By = Az if sup scx ac a, |f(1(A))| = +oo and, otherwise, let By =
B;\Az. Then By C By and sup ey acp, |f(#(4))| = +oo. We claim
that |f(u(B1\B2))| > 22. In fact, if By = A; and By = A, then
As C A; and hence

|F(u(B1\B2))| = | f(1(A1)) — f(n(A2))]
> | f(u(A2))| — |f((A1)) > 25

if By = A; and By = B\ Aj, then By = A;\ A2, A2 C A; and hence
£ (1(B1\B2))| = |f (u(A2))] > 2%
if B; = Q\A; and By = Aj, then Ay C Q\A; and hence
|f(w(B1\B2))| = | f (u(Q2\A1)) — f(u(A2))]
> |f(p(A2))] = |f((Q\A1)) > 2%
if B; = Q\A; and By = B;\A2, then By C By, A2 C B; and hence
|f(1(B1\B2))| = |f(u(A2))] > 2.

Now observing sup 4¢ 5 ac B, |f(1(A))| = +oo, we have an A3 C B, (A3
€ ¥) such that

|f(u(As))] > 3% + | (u(A2))| + | (w(B1\Az))I-
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Let By = Aj if supges aca, [F(1(A))| = +oo and, otherwise,. let
B3 = By\A;. Then B3 C By, supacy acp, |f(1#(4))] = +oo and

f(p(B2\B3))| > 33,

Continuing this construction inductively, we obtain a sequence {B;}
in ¥ such that

Bi 2B 2 B3 2+ and |[f(u(B;j\Bj+1))| > (5 + 1)

for all j. However, {B;\B;11}$2, is a pairwise disjoint sequence in X
and
G+ 17+
79

1 .
Ff(#(BJ'\BJ'-H)) > >j+1

for all j, i.e., {j—lfu(Bj\BjH)};l is not bounded. This contradicts
(©). 0

If a locally convex space X contains no copy of (cg, ||[|o), then X has
a series of very nice properties, e.g., every continuous linear operator
T : co — X is both compact and sequentially compact, i.e., for every
bounded B C ¢o, T(B) is both compact and sequentially compact ([5],
Theorem 4). Theorem 3 implies the following characterization of the
cg-absence.

COROLLARY 4. A sequentially complete locally convex space X con-
tains no copy of (co,|| - |leo) if and only if every bounded X-valued
measure is strongly additive.

Proof. As was stated in Example 1, if X contains a copy of (cg,
|| lloo)s then there exists a bounded measure which is not strongly
additive.

Suppose that X contains no copy of (co,| * ||oo) and g : ¥ — X
is a bounded measure. Let {A,} be a pairwise disjoint sequence in X.
By Theorem 3, the series Z;i:x p(A;) is weakly unconditionally Cauchy
and hence the series Z;’;l p(A;) converges because X contains no copy
of (co, || *|lco) ([5], Theorem 4). This shows that p is strongly additive.(]
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Let X and Y be Banach spaces. For a vector measure p : ¥ — X
and A € I, the semivariation ||u||(A) is defined by

Jul(4) = sup { | 3 eou(B)

Bell
Y-partition of A,ep.€ C, |eg] <1} ([3}], p-4).

This definition is reasonable because ||u[(€2) < +oo if and only if p

is bounded, ie., {u(4) : A € X} is bounded. However, there is an-

other definition of semivariation for operator-valued measure y : ¥ —
L(X,Y) and A € T as follows:

sl ) = sup { | 32 BB+ 1 2 nite

Bell

-partition of 4, f € X7, [f() <1} ([8], §4).
According to the semivariation (I), # : ¥ — L(X,Y) is of bounded
semivariation if and only if for every pairwise disjoint {A;} C X the
series Y21 pu(A;) (z;) converges for every {z;} € co(X), e, z; — 0
in X ([8], Theorem 4.2).

We would like to show that semivariation (I) and (II) are different
for operator-valued measures, in general.

THEOREM 5. Let X and Y be Banach spaces. If X is infinite-
dimensional, then there exists a measure u : 2N — L(X,Y) such that
p is strongly additive and hence p is bounded, i.e., p is of bounded
semivariation in the sense of (I) but p is not of bounded semivariation
in the sense of (II).

Proof. By Theorem 4 of [4], there exists a sequence {T;} C L(X,Y)
such that the series Z;’;l T; is subseries convergent in the operator
norm but sup,, || 372y Tj(z;)|| = +oo for some {z;} € co(X). Define
p:2N — L(X,Y) by u(A) = 3 ;c 4 Tj for AC N. Then p is strongly
additive because the series 3.2, T} is also unconditionally convergent
([5]). However, u is not of bounded semivariation in the sense of (II)
because the series Y 72, p({j})(2;) = 372, Tj(z;) diverges for some
{25} € co(X). O

‘:Hisaﬁnite

(I)
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