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ON NEARNESS SPACE

Seung On Lee and Eun Ai Choi

ABSTRACT. In 1974 H.Herrlich invented nearness spaces, a very fruit­
ful concept which enables one to unify topological aspects. In this pa­
per, we introduce the Lindelof nearness structure, countably bounded 
nearness structure and countably totally bounded nearness structure. 
And we show that (X, 헤) is concrete and complete if and only if 

心心 = ft in a symmetric topological space (X, t). Also we show that 
the following are equivalent in a symmetric topological space (X, t):

(1) (X, 으心) is countably totally bounded.
(2) (X, ft) is countably totally bounded.
(3) (X, t) is countably compact.

1. Introduction
Notation 1.1. Let X be a set. For 八H C P(X) and A,B C X 

the following notation is used:

(1) A\f B = {AU B : A e A.B e B}.

(2) A corefines B means that for each A E A there exists B E 13 

such that B C A, and denoted by A <13.

(3) A refines B means that for each A E A there exists B E B 

such that A C B, and denoted by X -〈 匕.

Definition 1.2. Let X be a set and 2 CP2(X) where P2(X) is 

the power set of the power set of X. Then f is said to be a nearness 

structure on X if it satisfies the following :
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(7\『i) A<B implies >1 € f.

(此) Aw4 / 0 implies 丄I G <$.

(川3)0/GP2PO.

(JV4) If 우4 V Z3 £ f, then >1 G f or 匕 6 f.

(2V5) Cl^A = {Cl^A : A G X} € <$ implies X G f, where Cl〒A = 

{, e x ： {{까M} g 0.

In this case, the pair (X, f) is called a nearness space or shortly 

an N-space, and A is said to be near if X € f •

f is called a quasi-nearness structure or shortly a Q-nearness struc­

ture on X if f satisfies (A『i), (八『2),(八『3)and (八》)•

Given a nearness space (X, f), the operator (7% is a closure opera­

tor on X. Hence there exists a topology associated with each nearness 

space in a natural way. This topology is denoted by Z(f) or t&. This 

topology is symmetric, i.e., if ⑦ 6 {y} then y 6 {⑦}.

DEFINITION 1.3. A nearness structure <$ is compatible with a topol­

ogy i on a set X if Z = Zg, where is a topology generated by f.

Conversely, given any symmetric topological space (X, t) there 

exists a compatible nearness structure given by

6 = McP(x)：n7^0},

where A = {A : A E A}-

DEFINITION 1.4. Let (X, f) be a nearness space.

(1) (X, f) is topological if X G f implies『14 羊 0.

(2) A non-empty subset A of P(X) is a, ^-cluster if is a maximal 

element of the set f, ordered by inclusion.

(3) (A\ f) is concrete if each near collection is contained in some 

f-cluster.

(4) (A\ f) is complete if Cl4 羊 0 for each maximal element A in
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(5) (X, f) is contigual if 丄I g f implies that there exists finite 

13 C A such that 23 $

(6) (X, <$) is totally bounded if X g($ implies that there exists 

finite B C A such that「)23 = 0.

(7) For A C 1引(X), A has the f.i.p. if for any finite subfamily B 

of A, QB 羊 0.

DEFINITION 1.5. Let (X, t) be a symmetric topological space and

= {A C P(X) : A has the f.i.p.}.

Then (X, ⑤) is called the Pervin nearness space on (X, /).

PROPOSITION 1.6. Every contigual nearness space is concrete.

PROOF. See reference [6].

PROPOSITION 1.7. Let (X, t) be a T\ topological space. Then 5P 

is a，compatible contigual nearness structure on X.

PROOF. See reference [3].

2. The Lindelof Nearness Space
For A C P(X), A has the c.i.p. if for any countable subfamily 13 

of v4, QB 尹 0.

DEFINITION 2.1. Let (X, f) be a symmetric topological space and

= {X C P(X) : A lias the c.i.p.}.

Then is called the Lindelof nearness structure on (X, f), and 

(X, fzj the Lindelof nearness space on (X, t).
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THEOREM 2.2. Let (X, /) be a symmetric topological space. Then 

(X, G>) is concrete and complete if and only if = (分 .

PROOF. Suppose that (X, is concrete and complete. It is ob­

vious that ft C fp. To show ⑤ C ft, take any A G Then A is 

contained in some ⑤-cluster B and「IB 羊 0 ; and hence「14 羊 0. Thus 

G，C ft implies = Qt. Conversely, suppose ⑤ = 心 then (X, 

is contigual. Hence (X, fp) is concrete by Proposition 1.6.. And for 

any A G ^-cluster, X G ft, and hence fX4 羊 0. Hence (X, ($?)) is 

complete.

PROPOSITION 2.3. Let (X, t) be a symmetric topological space. 

Then is a compatible nearness structure on (X, t).

PROOF. See reference [3].

THEOREM 2.4. Let (X, t) be a symmetric topological space. Then 

(X, fzj is concrete and complete if and only if 紅 =(&.

PROOF. Suppose [l = <&. To show (X, f心) is concrete, take any 

A E then QA 羊 0. Pick x G「VL Let $l(X)= {B C X : 

x G CIqlB}, thenPlfzXa:) 羊 0 implies $l(X)€ [l. To show <$l(X) is 

maximal, assume that($l(x) C D €($l and take any Z) 6 2). Since 

x e {x} = Cl^L{x}, {x} G 휴(⑦) C P G Then {{x},D} G 트l 
implies x G CIqlD. Thus D G (⑦) and hence V C 仕에 Hence 

(리:) is ^-cluster. Assume that A E A but A 우 仕(乞), then x 우 

CIrlA. But for each A E Ay x E A = Cl^LA. This is a contradiction. 

Hence A C <$l(：心). Thus (X, fzj is concrete. Next, we will show that 

(X, <$l) is complete. Let A E ^-cluster, then 느4 三 으刀 = and hence 

CUI 羊 0. Thus (X, fzj is complete. Conversely, if (X, ($l) is concrete 

and complete, then ⑤ C fz,. To show f丄 C <5, let A G fz,. Then 

there is a ^-cluster B with A C B since (X, f/J is concrete. Because 

(X, 히 is complete, PlZ3 羊 ® ； hence HA 羊 0. Thus A E Ct-
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COROLLARY 2.5. Let (X, t) be a symn'ietric topological space. 

If (X, G)) is concrete and complete, then (X, 데 is concrete and 

complete.

NOTATION 2.6. Let (X, f) be a nearness space.

(1) tip = {Ac P(X) ： {X-A： A e A} GJ.

(2) " = {5 C P(X) : {X — j? ： B G 日}》휴}.

(3) 內 = {C c P(x): {x-c：CeC}^ 6}.

In this paper, a compact space need not be Hausdorff.

COROLLARY 2.7. Let (X, t) be a symmetric topological space. 

Then :

6 CC (p and 內, C ml C p%

I丄p = I丄L if and only if (X, t) is countably compact.

/U = I丄i if and only if (A\ t) is Lincleldf.

阿 = /丄l = fit if and only if (X, t) is compact.

PROOF. See reference [3].

COROLLARY 2.8. Let (X, t) be a symmetric topological space. 

Then :

(1) (X, fzj is concrete and complete if and only if (X, t) is 

Lindeldf.

(2) (X, ⑤ ) is concrete and complete if and only if (X, t) is com­

pact.

Definition 2.9. Let (_Y, f) be a Q-nearness space. Then:

(1) (X, <$) is countably contigual if 丄I g f implies that there exists 

a countable B C A such that Z3 g f.

(2) (X, f) is countably bounded if 누4 g f implies that there exists 

a. countable B C A such that C]B = 0.
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(3) (JV, f) is countably totally bounded if every countable A C 

P(X) with the finite intersection property is near.

PROPOSITION 2.10. Let (A\ t) be a symmetric topological space. 

Then :

(1) (X, fzj is countably contigual,

(2) (X, fzj is countably bounded.

PROOF. See reference [3].

THEOREM 2.11. Let (X, t) be a symmetric topological space. 

Then:

(1) If (X, is contigual then (X, i) is countably compact.

(2) If (X, ⑤) is countably bounded then (X, t) is Lindeldf.

PROOF. (1) Suppose (X, fz) is contigual and take any countable 

open cover Q = {Ga : a G A} of X. Then {X — Ga : a G A} g 女, and 

since (X, 히 is contigual there exists a finite B = {X — Gai : Gai G 

才, i = 1,2,..,n} such that B g〈刀. Hence Q has a finite sub cover 

{(구m : i = 1,2,n} for X.

(2) Take any open cover C7 = { Ga : a € A} of X. Then {X — Ga : 

a G A} $and since (X, ⑤) is countably bounded there exists 

a countable T〉= {X — Gai : i € I, I is a countable set} C {X — 

Gq : a € A} such that A'D = 0. Hence Q has a countable sub cover 

丁)* = {(Ja£ : i 三 I, I is a countable set} for X.

THEOREM 2.12. Let (X, /) be a symmetric topological space. 

Then the following are equivalent :

(1) (X, 하 is countably totally bounded.

(2) (X, ⑤) is countably totally bounded.

(3) (X, t) is countably compact.
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PROOF. (2)==(3). Suppose (X, ⑤) is countably totally bounded. 

Take any countable open cover Q = {Ga : a G A} of X. Since 

Qt = {A C P(X) : QA 羊 0}, {X — (7a : a 6 A} 우 and hence there 

exists a finite B C {X — Ga : a G A} such that「)匕 = 0. Hence (X, t) 

is countably compact.

(3)==(2).  Suppose (X, t) is countably compact. Let A 中 Qt and A 

a countable subfamily of P(X). Then Cl4 = 0 ; and hence U{X — A : 

A G A} = X. Thus thei’e exists a finite B C {X — A : A E A} with 

U匕 = X. Hence (X, f J is countably totally bounded.

(1)==>(3). Suppose (X, f/J is countably totally bounded. Take 

any countable open cover Q = {Ga : ct 6 A} of X. Since($L = {yl c 

P(X) : A has the c.i.p.}, {X — GQ : a € A} % $匕 and hence there 

exists a finite 13 C {X — Ga : a G A} such that r)Z3 = 0. Hence (X, t) 

is countably compact.

(3)=>(1).  Suppose (X, Z) is countably compact. Let A 中 흐三 and 

A a countable subfamily of P(X). Then「L4 = 0; and U{X — A : 

A E A] = X. Thus there exists a finite B C {X — A : A E A} with 

UZ3 = X, Hence (X, fz,) is countably totally bounded.

DEFINITION 2.13. Let (X, 5) be a nearness space and k a regular 

infinite cardinal.

Then :

(1) (X, <$) is k-contigual if >1 g f implies that there exists B G A 

with \ 6 \< k such that 匕 $ f•

(2) (X, f) is k-bounded if >1 g f implies that there exists B G A 

with | 13 \< k such that QB = 0.

(3) For A C 'P(X), A has the k.i.p. if for any 13 C A with 

I 匕 匕nl 쿠 0.

For a symmetric topological space (X, i), let

Qk = {A C P(X) : A has the k.i.p.},
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where k is a regular infinite cardinal.

PROPOSITION 2.14. Let (X, t) be a symmetric topological space 

and k a regular infinite cardinal. Then ① •玄 a compatible k-contigual 

nearness structure on X.

PROOF. First, we will show that ③ is a compatible nearness struc­

ture on X. For each A C x E Cl^kA if and only if {{x}^A} G 石仙 

Thus {x} PI A / 0. Let y G {x} D A, then x € {y} C A ; and 

hence Cl^kA C A. Conversely, let x E A. Then {x} D A / 0 implies 

{{a:}, A} E Qk ；and hence x G Cl〒kA. Thus A C C!하A. Next, to 

show that (X,。化) is fc-contigual, let A g f人. Then there exists B C A 

such that \ B \< k and ClB = 0, and then 匕 $ ③ ; and hence (X, 

is fc-contigual. Lastly, it is obvious that (X, fk) is a nearness space.

THEOREM 2.15. Let (X, f) be a symmetric topological space. 

Then (X, fjQ is concrete and complete if and only if ① =(&•

PROOF. Suppose 하 =(&. To show (X, 사 is concrete, take any 

A G 하, then QA 羊 0. Pick x E DA Let 흐(冗) = {B C X : x E 

CI&JB}. Assume that C T〕三 &k and take any D E T>. Since 

X e {x} = Cl^k{x}, {x} e 6UX)C 7】 e Then {{x},D} G 휴 and 

hence x 三 ClgkD. Thus D G 휴(紀) implies T)C fit(仁). Hence <&；(立) 

is 휴-cluster. Assume that A E A but A 우 히⑦), then x 우 Cl(kA. 

But for each A 6 A^x 6 A = Cl^kA. This is a contradiction. Hence 

A C Thus (X, 하) is concrete. Next, we will show that (X, 휴) 

is complete. Let A € 하-cluster, then A E Ck = ft, and then HA 羊 0. 

Thus (X, ⑤) is complete. Conversely, it is obvious that Qt = 트.

REMARK. In a Q-nearness space, every countably contigual near­

ness space must be countably bounded. But every countably bounded 

nearness space need not be countably contigual.
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Example 2.16. Let X = Rx {0,1} and let

p = {H x {0}} U{Rx {1}} U {{r} x {0,1} : r G R}.

Define

li = {Ac P(X) :

Then (X,(』) is a Q-nearness space and is countably bounded, but 

not countably contigual. For if A = T> then there exist no countable 

subset B of A such that 13 E p \ and hence (X, /i) is not countably 

contigual.
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