• Title/Summary/Keyword: boundary point

Search Result 1,417, Processing Time 0.024 seconds

A Study on the Framing Plan of Boundary Point Record Book Based on Parcel Boundary Point (필지경계점 중심의 경계점등록부 작성 방안)

  • Kim, Jun Hyun;Kwon, Kee Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.spc4_2
    • /
    • pp.375-386
    • /
    • 2014
  • This research inquired problems that appeared in the previous boundary point coordinates record book, boundary point cover record book, and ground boundary point record book. Also, we suggested the framing plan and based on the boundary point record book for the registration and management of boundary point of cadastral resurvey upon completion on record book. In fact, the outlines of result could be organized into three following points; Firstly, a quick survey can be possible, as reference points for the present situation were available to be checked right away due to unify and manage the boundary point at the record book, even if at the field without the location explanation drawings of boundary points. Secondly, continuous managing of boundary points is possible, since recording the boundary points book with a parcel boundary point, as a unit, make it easily monitoring the formation, critical situation, and extinction of boundary point. Thirdly, the boundary point could be maintained at the boundary points at location, coinciding with geographic features by requesting boundary changes at the time of completion, although it has been made at when the location explanation drawing is made.

TWO EXAMPLES OF LEFSCHETZ FIXED POINT FORMULA WITH RESPECT TO SOME BOUNDARY CONDITIONS

  • Yoonweon Lee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.1-17
    • /
    • 2024
  • The boundary conditions $\tilde{P}_0$ and $\tilde{P}_1$ were introduced in [5] by using the Hodge decomposition on the de Rham complex. In [6] the Atiyah-Bott-Lefschetz type fixed point formulas were proved on a compact Riemannian manifold with boundary for some special type of smooth functions by using these two boundary conditions. In this paper we slightly extend the result of [6] and give two examples showing these fixed point theorems.

The Experimental Method to Identify The Boundary Condition of Vibrating Structure (진동 구조물의 경계조건을 실험적으로 구하는 방법)

  • Kim, Young-Ju;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.525-530
    • /
    • 2000
  • The vibration shape of the structure with arbitrary boundary condition under excitation is determined by the governing equation and the boundary condition and driving force. In this paper, driving point impedance that is defined by the ratio of the driving force at one point to the velocity of that point is selected as a measure to identify the boundary condition. First, this paper deals with a string with arbitrary boundary condition. It is selected because of its simplicity, but generality of which exhibits the desired physical phenomena. Particularly the relation among the driving point impedance, the boundary condition and the vibration shape is dealt as a primary step to identify the boundary condition by using the driving point impedance.

  • PDF

POSITIVE SOLUTIONS TO A FOUR-POINT BOUNDARY VALUE PROBLEM OF HIGHER-ORDER DIFFERENTIAL EQUATION WITH A P-LAPLACIAN

  • Pang, Huihui;Lian, Hairong;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.59-74
    • /
    • 2010
  • In this paper, we obtain the existence of positive solutions for a quasi-linear four-point boundary value problem of higher-order differential equation. By using the fixed point index theorem and imposing some conditions on f, the existence of positive solutions to a higher-order four-point boundary value problem with a p-Laplacian is obtained.

A FIFTH ORDER NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.689-706
    • /
    • 2008
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed two point boundary value problems with a boundary layer at one end point. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system. An asymptotically equivalent first order equation of the original singularly perturbed two point boundary value problem is obtained from the theory of singular perturbations. It is used in the fifth order compact difference scheme to get a two term recurrence relation and is solved. Several linear and non-linear singular perturbation problems have been solved and the numerical results are presented to support the theory. It is observed that the present method approximates the exact solution very well.

  • PDF

SOLVABILITY OF MULTI-POINT BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS AT RESONANCE

  • Liu, Yuji;Liu, Xingyuan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.425-443
    • /
    • 2012
  • Sufficient conditions for the existence of at least one solution of a class of multi-point boundary value problems of the fractional differential equations at resonance are established. The main theorem generalizes and improves those ones in [Liu, B., Solvability of multi-point boundary value problems at resonance(II), Appl. Math. Comput., 136(2003)353-377], see Remark 2.3. An example is presented to illustrate the main results.

A boundary radial point interpolation method (BRPIM) for 2-D structural analyses

  • Gu, Y.T.;Liu, G.R.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.535-550
    • /
    • 2003
  • In this paper, a boundary-type meshfree method, the boundary radial point interpolation method (BRPIM), is presented for solving boundary value problems of two-dimensional solid mechanics. In the BRPIM, the boundary of a problem domain is represented by a set of properly scattered nodes. A technique is proposed to construct shape functions using radial functions as basis functions. The shape functions so formulated are proven to possess both delta function property and partitions of unity property. Boundary conditions can be easily implemented as in the conventional Boundary Element Method (BEM). The Boundary Integral Equation (BIE) for 2-D elastostatics is discretized using the radial basis point interpolation. Some important parameters on the performance of the BRPIM are investigated thoroughly. Validity and efficiency of the present BRPIM are demonstrated through a number of numerical examples.

THE METHOD OF QUASILINEARIZATION AND A THREE-POINT BOUNDARY VALUE PROBLEM

  • Eloe, Paul W.;Gao, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.319-330
    • /
    • 2002
  • The method of quasilinearization generates a monotone iteration scheme whose iterates converge quadratically to a unique solution of the problem at hand. In this paper, we apply the method to two families of three-point boundary value problems for second order ordinary differential equations: Linear boundary conditions and nonlinear boundary conditions are addressed independently. For linear boundary conditions, an appropriate Green\`s function is constructed. Fer nonlinear boundary conditions, we show that these nonlinearities can be addressed similarly to the nonlinearities in the differential equation.

THE METHOD OF ASYMPTOTIC INNER BOUNDARY CONDITION FOR SINGULAR PERTURBATION PROBLEMS

  • Andargie, Awoke;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.937-948
    • /
    • 2011
  • The method of Asymptotic Inner Boundary Condition for Singularly Perturbed Two-Point Boundary value Problems is presented. By using a terminal point, the original second order problem is divided in to two problems namely inner region and outer region problems. The original problem is replaced by an asymptotically equivalent first order problem and using the stretching transformation, the asymptotic inner condition in implicit form at the terminal point is determined from the reduced equation of the original second order problem. The modified inner region problem, using the transformation with implicit boundary conditions is solved and produces a condition for the outer region problem. We used Chawla's fourth order method to solve both the inner and outer region problems. The proposed method is iterative on the terminal point. Some numerical examples are solved to demonstrate the applicability of the method.

Linear Quadratic Regulators with Two-point Boundary Riccati Equations (양단 경계 조건이 있는 리카티 식을 가진 선형 레규레이터)

  • Kwon, Wook-Hyun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.5
    • /
    • pp.18-26
    • /
    • 1979
  • This paper extends some well-known system theories on algebraic matrix Lyapunov and Riccati equations. These extended results contain two point boundary conditions in matrix differential equations and include conventional results as special cases. Necessary and sufficient conditions are derived under which linear systems are stabilizable with feedback gains derived from periodic two-point boundary matrix differential equations. An iterative computation method for two-point boundary differential Riccati equations is given with an initial guess method. The results in this paper are related to periodic feedback controls and also to the quadratic cost problem with a discrete state penalty.

  • PDF