• 제목/요약/키워드: boundary nonlinearity

검색결과 219건 처리시간 0.026초

SOLVABILITY FOR THE PARABOLIC PROBLEM WITH JUMPING NONLINEARITY CROSSING NO EIGENVALUES

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제16권4호
    • /
    • pp.545-551
    • /
    • 2008
  • We investigate the multiple solutions for a parabolic boundary value problem with jumping nonlinearity crossing no eigenvalues. We show the existence of the unique solution of the parabolic problem with Dirichlet boundary condition and periodic condition when jumping nonlinearity does not cross eigenvalues of the Laplace operator $-{\Delta}$. We prove this result by investigating the Lipschitz constant of the inverse compact operator of $D_t-{\Delta}$ and applying the contraction mapping principle.

  • PDF

Effect of boundary mobility on nonlinear pulsatile-flow induced dynamic instability of FG pipes

  • Zhoumi Wang;Yiru Ren;Qingchun Meng
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.751-764
    • /
    • 2023
  • In practical engineering such as aerial refueling pipes, the boundary of the fluid-conveying pipe is difficult to be completely immovable. Pipes under movable and immovable boundaries are controlled by different dominant nonlinear factors, where the boundary mobility will affect the nonlinear dynamic characteristics, which should be focused on for adopting different strategies for vibration suppression and control. The nonlinear dynamic instability characteristics of functionally graded fluid-conveying pipes lying on a viscoelastic foundation under movable and immovable boundary conditions are systematically studied for the first time. Nonlinear factors involving nonlinear inertia and nonlinear curvature for pipes with a movable boundary as well as tensile hardening and nonlinear curvature for pipes with an immovable boundary are comprehensively considered during the derivation of the governing equations of the principal parametric resonance. The stability boundary and amplitude-frequency bifurcation diagrams are obtained by employing the two-step perturbation- incremental harmonic balance method (TSP-IHBM). Results show that the movability of the boundary of the pipe has a great influence on the vibration amplitude, bifurcation topology, and the physical meanings of the stability boundary due to different dominant nonlinear factors. This research has guidance significance for nonlinear dynamic design of fluid-conveying pipe with avoiding in the instability regions.

EXISTENCE OF THE SOLUTIONS FOR THE SINGULAR POTENTIAL ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제20권1호
    • /
    • pp.107-116
    • /
    • 2012
  • We investigate the multiple solutions for a class of the elliptic system with the singular potential nonlinearity. We obtain a theorem which shows the existence of the solution for a class of the elliptic system with singular potential nonlinearity and Dirichlet boundary condition. We obtain this result by using variational method and critical point theory.

SINGULAR POTENTIAL BIHARMONIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제21권4호
    • /
    • pp.483-493
    • /
    • 2013
  • We investigate the multiplicity of the solutions for a class of the system of the biharmonic equations with some singular potential nonlinearity. We obtain a theorem which shows the existence of the nontrivial weak solution for a class of the system of the biharmonic equations with singular potential nonlinearity and Dirichlet boundary condition. We obtain this result by using variational method and the generalized mountain pass theorem.

TRIPLE SOLUTIONS FOR THREE-ORDER PERIODIC BOUNDARY VALUE PROBLEMS WITH SIGN CHANGING NONLINEARITY

  • Tan, Huixuan;Feng, Hanying;Feng, Xingfang;Du, Yatao
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.75-82
    • /
    • 2014
  • In this paper, we consider the periodic boundary value problem with sign changing nonlinearity $$u^{{\prime}{\prime}{\prime}}+{\rho}^3u=f(t,u),\;t{\in}[0,2{\pi}]$$, subject to the boundary value conditions: $$u^{(i)}(0)=u^{(i)}(2{\pi}),\;i=0,1,2$$, where ${\rho}{\in}(o,{\frac{1}{\sqrt{3}}})$ is a positive constant and f(t, u) is a continuous function. Using Leggett-Williams fixed point theorem, we provide sufficient conditions for the existence of at least three positive solutions to the above boundary value problem. The interesting point is the nonlinear term f may change sign.

Remark for Certain Elliptic PDE with Exponential Nonlinearity in a Bounded Domain

  • Kim, Namkwon
    • 통합자연과학논문집
    • /
    • 제6권3호
    • /
    • pp.181-182
    • /
    • 2013
  • In this note, we are concerned with a class of semi-linear elliptic pdes with exponential nonlinearity in a bounded domain. Here, the nonlinearity is more or less growing exponentially with power p. We consider the problem under two types of Dirichlet boundary condition. We give existence and non-existence of solutions for those problems and some asymptotics.

TOPOLOGICAL APPROACH FOR THE MULTIPLE SOLUTIONS OF THE NONLINEAR PARABOLIC PROBLEM WITH VARIABLE COEFFICIENT JUMPING NONLINEARITY

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제19권1호
    • /
    • pp.101-109
    • /
    • 2011
  • We get a theorem which shows that there exist at least two or three nontrivial weak solutions for the nonlinear parabolic boundary value problem with the variable coefficient jumping nonlinearity. We prove this theorem by restricting ourselves to the real Hilbert space. We obtain this result by approaching the topological method. We use the Leray-Schauder degree theory on the real Hilbert space.

반무한 다중 구조계의 비선형 유한요소 - 경계요소 해석 (Analysis of Multi-Layered Structural Systems Using Nonlinear Finite Elements-Boundary Elements)

  • 김문겸;장정범;이상도;황학주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.58-64
    • /
    • 1992
  • It is usual that underground structures are constructed within multi-layered medium. In this paper, an efficient numerical model ling of multi-layered structural systems is studied using coupled analysis of finite elements and boundary elements. The finite elements are applied to the area in which the material nonlinearity is dominated, and the boundary elements are applied to the far field area where the nonlinearity is relatively weak. In the boundary element model 1 ins of the multi-layered medium, fundamental solutions are restricted. Thus, methods which can utilize existing Kelvin and Melan solution are sought for the interior multi-layered domain problem and semi infinite domain problem. Interior domain problem which has piecewise homogeneous layers is analyzed using boundary elements with Kelvin solution; by discretizing each homogeneous subregion and applying compatibility and equilibrium conditions between interfaces. Semi-infinite domain problem is analyzed using boundary elements with Melan solution, by superposing unit stiffness matrices which are obtained for each layer by enemy method. Each methodology is verified by comparing its results which the results from the finite element analysis and it is concluded that coupled analysis using boundary elements and finite elements can be reasonable and efficient if the superposition technique is applied for the multi-layered semi-infinite domain problems.

  • PDF

GEOMETRIC RESULT FOR THE ELLIPTIC PROBLEM WITH NONLINEARITY CROSSING THREE EIGENVALUES

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제20권4호
    • /
    • pp.507-515
    • /
    • 2012
  • We investigate the number of the solutions for the elliptic boundary value problem. We obtain a theorem which shows the existence of six weak solutions for the elliptic problem with jumping nonlinearity crossing three eigenvalues. We get this result by using the geometric mapping defined on the finite dimensional subspace. We use the contraction mapping principle to reduce the problem on the infinite dimensional space to that on the finite dimensional subspace. We construct a three dimensional subspace with three axis spanned by three eigenvalues and a mapping from the finite dimensional subspace to the one dimensional subspace.