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EXISTENCE OF THE SOLUTIONS FOR THE

SINGULAR POTENTIAL ELLIPTIC SYSTEM

Tacksun Jung and Q-Heung Choi∗

Abstract. We investigate the multiple solutions for a class of the
elliptic system with the singular potential nonlinearity. We obtain
a theorem which shows the existence of the solution for a class of
the elliptic system with singular potential nonlinearity and Dirich-
let boundary condition. We obtain this result by using variational
method and critical point theory.

1. Introduction and statement of main result

Let Ω be a bounded subset of Rn with smooth boundary. Let D be
an open subset in Rn with compact complement C = Rn\D, n ≥ 2. In
this paper we investigate the multiple solutions U(·) ∈ C2(Ω, D) for a
class of the elliptic system with the singular potential nonlinearity and
Dirichlet boundary condition

∆U(x) = gradUG(x, U(x)) in Ω,(1.1)

U = (0, · · · , 0) on ∂Ω

where G ∈ C2(Ω ×D,R1) and U = (u1, . . . , un). We assume that G
satisfies the following conditions:
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(G1) There exists R0 > 0 such that

sup{|G(x, U)|+ ∥gradUG(x, U)∥Rn | (x, U) ∈ Ω× (Rn\BR0)} < +∞.

(G2) There is a neighborhood Z of C in Rn such that

G(x, U) ≥ A

d2(U,C)
for (x, U) ∈ Ω× Z,

where d(U,C) is the distance function to C and A > 0 is a constant. Let
U = (u1, . . . , un). The system (1.1) can be rewritten as

δu1(x) =
∂

∂u1

g(x, u(x)) in ω,

δu2(x) =
∂

∂u2

g(x, u(x)) in ω,(1.2)

...
...

...,

δun(x) =
∂

∂un

g(x, u(x)) in ω,

u1 = · · · = un = 0 on ω,

where gradUG(x, U(x)) = (Gu1(x, U), . . . , Gun(x, U)). Let 0 < λ1 <
λ2 ≤ . . . ≤ λk ≤ . . . be the eigenvalues and ϕk be the eigenfunctions
belonging to the eigenvalue λk, k ≥ 1, of the eigenvalue problem for a
single elliptic problem

−∆u = λu in Ω,

u = 0 on ∂Ω.

We note that ϕ1(x) is the positive normalized eigenfunction associated
to λ1. Let H = H1

0 (Ω, R
n). We endow the Hilbert space H with the

norm

∥U∥2H =
n∑

i=1

∥ui∥2,

where ∥ui∥2 =
∫
Ω
|∇ui(x)|2dx. Thus we have

∥U∥H =

∫
Ω

∥∇U(x)∥2Rn .
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In this paper we are trying to find the weak solutions U ∈ C2(Ω, D)∩H
of the system (1.1), that is, U = (u1 . . . , un) ∈ C2(Ω, D) ∩H such that∫
Ω

[∇u1 · ∇ϕ1 +∇u2 · ∇ϕ2 + · · ·+∇un · ∇ϕn]dx+

∫
Ω

∂

∂u1

G(x, U(x)) · ϕ1

+

∫
Ω

∂

∂u2

G(x, U(x)) · ϕ2 + · · ·+
∫
Ω

∂

∂un

G(x, U(x)) · ϕn = 0,

for all ϕ = (ϕ1, · · · , ϕn) ∈ C2(Ω, D) ∩H, i.e.,∫
Ω

[∇U · ∇ϕ]dx+

∫
Ω

gradUG(x, U(x)) · ϕ = 0, for all ϕ ∈ C2(Ω, D)∩H.

In [1-7] the authors investigate the existence of multiple solution of
elliptic problems. In [8] there are many methods to study the existence
of multiple solution of elliptic problems and some simple nonlinear prob-
lems. Our main result is the following:

Theorem 1.1. Assume that G satisfies the conditions (G1) − (G2).
Then system (1.1) has at least one solution.

For the proof of Theorem 1.1 we approach the variational method and
the critical point theory. In section 2, we investigate the (P.S.) condition
for the associated functional of (1.1). In section 3, we prove Theorem
1.1 by the some variant of the mountain pass theorem in critical point
theory.

2. Palais Smale Condition

Since |λi| ≥ 1 for all i ≥ 1, we have the following lemma.

Lemma 2.1. Let u ∈ H1
0 (Ω, R) and ∥ · ∥ is a Sobolev norm. Then

(i) ∥u∥ ≥ C∥u∥L2(Ω) for some constant C > 0.
(ii) ∥u∥ = 0 if and only if ∥u∥L2(Ω) = 0.

(iii) −∆u ∈ W 1,2
0 (Ω, R) implies u ∈ W 1,2

0 (Ω, R).

Proof. (i) and (ii) can be checked easily.
(iii) Let λn be an eigenvalue of the eigenvalue problem for a single elliptic
equation −∆u = λu in Ω with Dirichlet boundary condition. We note
that {λn : |λn| < |c|} is finite. Let us set f = −∆u ∈ W 1,2

0 (Ω, R). Then
f can be expressed by

f =
∑

hnϕn.
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Then

(−∆)−1f =
∑ 1

λn

hnϕn.

Hence we have the inequality

∥(−∆)−1f∥2 =
∑

λ2
n

1

λ2
n

h2
n ≤

∑
h2
n,

which means that
∥(−∆)−1f∥ ≤ ∥f∥L2(Ω).

Let us introduce an open set of the Hilbert space H1
0 (Ω, R

n) as follows

E = {U ∈ H1
0 (Ω, R

n)| U(x) ∈ D ⊂ Rn, x ∈ Ω}.
Let us define the functional on E

(2.1) I(U) =

∫
Ω

(
1

2
∥∇U(x)∥2Rn +G(x, U(x)))dx,

where ∥U∥2H =
∫
Ω
∥∇U∥2Rn =

∑n
i=1 ∥∇ui∥2R1 . The Euler equation for

(2.1) is (1.1). By the following proposition 2.1, I ∈ C1(E,R), and so
the weak solutions of system (1.1) coincide with the critical points of the
associated functional I(U).

Proposition 2.1. Assume that G satisfies the conditions (G1) −
(G2). Then I(U) is continuous and Fréchet differentiable in E with
Fréchet derivative

DI(U)V

(2.2)

=

∫
Ω

((−∆U(x)) · V (x) + gradUG(x, U(x)) · V (x))dx, ∀V ∈ E.

Moreover DI ∈ C. That is, I ∈ C1.

Proof. First we prove that I(U) is continuous. For U, V ∈ E,

|I(U + V )− I(U)| = |1
2

∫
Ω

(−∆U(x)−∆V (x))) · (U(x) + V (x))dx

+

∫
Ω

G(x, U(x) + V (x))dx− 1

2

∫
Ω

(−∆U(x)) · U(x)dx−
∫
Ω

G(x, U(x))dx

= |1
2

∫
Ω

[(−∆U · V −∆V · U −∆V · V )dx+

∫
Ω

(G(x, U + V )−G(x, U))dx|.
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We have

|
∫
Ω

[G(x, U + V )−G(x, U)]dx|(2.3)

≤ |
∫
Ω

[gradUG(x, U(x)) · V +O(∥V ∥Rn)]dx|

= O(∥V ∥Rn).

Thus we have
|I(U + V )− I(U)| = O(∥V ∥Rn).

Next we shall prove that I(U) is Fréchet differentiable in E. For U, V ∈
E,

|I(U + V )− I(U)−∇I(U)V |

= |1
2

∫
Ω
(−∆U −∆V ) · (U + V )dx+

∫
Ω
G(x,U + V )dx− 1

2

∫
Ω
(−∆U) · Udx

−
∫
Ω
G(x,U)dx−

∫
Ω
(−∆U + gradUG(x,U(x))) · V dx|

= |1
2

∫
Ω
[−∆U · V −∆V · U −∆V · V ]dx+

∫
Ω
[G(x,U + V )−G(x, U)]dx

−
∫
Ω
[(−∆U + gradUG(x,U(x))) · V ]dx|.

Thus by (2.3), we have

(2.4) |I(U + V )− I(U)−DI(U)V | = O(∥V ∥Rn).

Similarly, it is easily checked that I ∈ C1.

Lemma 2.2. Assume that G satisfies the conditions (G1)− (G2). Let
{Uk} ⊂ E and Uk ⇀ U weakly in E with U ∈ ∂E. Then I(Uk) → ∞.

Proof. To prove the conclusion, it suffices to prove that∫
Ω

G(x, Uk(x))dx −→ +∞.

Since G(x, U(x)) is bounded from below, it suffices to prove that there
is a subset Ω̃ of Ω such that∫

Ω̃

G(x, Uk(x))dx −→ +∞.

U ∈ ∂E means that there exists x∗ ∈ Ω such that U(x∗) ∈ ∂D. Let us
set

Ωδ(x
∗) = {x ∈ Ω| ∥x− x∗∥Rn < δ}.
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By (G1) and (G2), there exists a constant B such that

G(x, U) ≥ A

d2(U,C)
−B.

Thus we have∫
Ωδ(x∗)

G(x, U(x))dx ≥
∫
Ωδ(x∗)

(
A

∥U(x)− U(x∗)∥2Rn

−B)dx

for all δ > 0. By Schwarz’s inequality, we have

∥U(x)−U(x∗)∥Rn ≤ ∥x−x∗∥
1
2
Rn(

∫
Ω

∥∇U(x)∥2Rn)
1
2 ≤ δ

1
2 (

∫
Ω

∥∇U(x)∥2Rn)
1
2 .

Thus we have∫
Ωδ(x∗)

G(x, U(x))dx ≥
∫
Ωδ(x∗)

(
A

δ∥U∥2H
−B)dx −→ ∞.

Hence ∫
Ωδ(x∗)

G(x, U(x))dx = ∞.

Since the embedding H ↪→ C(Ω, Rn) is compact, we have

max{∥U(x)− Uk(x)∥2Rn | x ∈ Ω} −→ 0 as k → ∞.

Thus by Fatou’s lemma, we have

lim inf

∫
Gδ(x∗)

G(x, Uk(x)) ≥
∫
Gδ(x∗)

lim inf G(x, Uk(x))

=

∫
Gδ(x∗)

G(x, U(x)) = +∞.

Thus

lim inf

∫
Gδ(x∗)

G(x, Uk(x)) = +∞.

Thus

I(Uk) =

∫
Ω

[
1

2
∥∇Uk∥2Rn +G(x, Uk(x))]dx −→ +∞,

so we prove the lemma.

Lemma 2.3. (Palais-Smale condition) Assume that G satisfies the
conditions (G1) and (G2). Then there exists a constant γ0 depending
on C1 norm of the function G on Ω× (Rn\BR0) such that I(u) satisfies
the (P.S.)γ condition for γ > γ0.
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Proof. We shall prove the lemma by contradiction. We suppose that
there exists a sequence {Uk} ⊂ E satisfying I(Uk) → γ and

(2.5) DI(Uk) = −∆Uk + gradUG(x, Uk(x)) −→ θ in E,

or equivalently

Uk + (I −∆)−1(gradUG(x, Uk(x))− Uk) −→ θ,

where θ = (0, · · · , 0) and (I−∆)−1 is a compact operator. We claim that
the sequence {Uk}, up to a subsequence, converges. Since G is bounded
below and

I(Uk) =

∫
Ω

[
1

2
∥∇Uk∥2Rn +G(x, Uk(x))]dx −→ γ,

there exists a constant τ > 0 such that∫
Ω

∥∇Uk∥2Rndx ≤ τ.

We shall prove that the sequence {Uk} , up to a subsequence, is bounded
in H1

0 (Ω, R
n). If then, there is a subsequence, up to a subsequence, Uk

converging weakly to U in E. By Lemma 2.2, we have that U ∈ E
and that ∥gradUG(·, Uk)∥ is bounded. Since (I − ∆)−1 is compact and
(2.5) holds, {Uk} converges strongly to U . Let Vki =

1
|Ω|

∫
Ω
Uki(x)dx, i =

1, . . . , n, where Uk = (Uk1 , · · · , Ukn), and Vk = (Vk1 , · · · , Vkn). If {Vk} is
bounded, then {Uk} is bounded in H1

0 (Ω, R
n). Thus it suffices to prove

that {Vk} is bounded. By contradiction, we suppose that ∥Vk∥Rn → ∞.
Then for large k, we have

(2.6) ∥Uk(x)∥Rn ≥ ∥Vk∥Rn − (|Ω|
∫
Ω

∥∇Uk∥2Rndx)
1
2 ≥ R0.

It follows from (2.6) that

|
∫
Ω

G(x, U(x))dx|(2.7)

≤ |Ω| sup{|G(x, U(x))|| (x, U(x)) ∈ Ω× (Rn\BR0)}.
By (2.5), for large k, we have∫

Ω

[∥∇Uk(x)∥2Rn + gradUG(x, Uk(x))(Uk − Vk)]dx ≤ ∥Uk − Vk∥H .

Since
∫
Ω
[Uk − Vk]dx = 0, we have

∥(Uk − Vk)∥H = ∥∇Uk∥L2 , ∥(Uk − Vk)∥L2 ≤ ∥(Uk − Vk)∥H .
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It follows that∫
Ω

∥∇Uk∥2Rndx ≤ ∥∇Uk∥L2 + ∥gradUG(x, Uk)∥L2∥∇Uk∥L2 .

Thus we have

∥∇Uk∥L2 ≤ 1 + ∥gradUG(x, Uk)∥L2(2.8)

≤ 1 + |Ω| sup
(x,U)∈Ω×(Rn\BR0

)

∥gradUG(x, Uk)∥Rn .

Let

γ0 =
1

2
(1 + |Ω| sup

(x,U)∈Ω×(Rn\BR0
)

∥gradUG(x, Uk)∥Rn)2

+ |Ω| sup
(x,U)∈Ω×(Rn\BR0

)

|G(x, Uk)|.

Then by (2.7) and (2.8), I(Uk) ≤ γ0, which leads to a contradiction.
Thus we prove the lemma.

3. Proof of Theorem 1.1

By Proposition 2.1, I(U) is continuous and Fréchet differentiable in
E and moreover DI ∈ C. By Lemma 2.2, If {Uk} ⊂ E and Uk ⇀ U
weakly in E with U ∈ ∂E, then I(Uk) → ∞. By Lemma 2.3, there exists
a constant γ0 depending on C1 norm of the function G on Ω× (Rn\BR0)
such that I(u) satisfies the (P.S.)γ condition for γ > γ0. Let us choose
an element U ∈ ∂E and a small neighborhood Br(U) of U with radius
r > 0. We can choose an U0 ∈ Br(U) ∩ E. We also choose elements
U1 and U2 such that U1, U2 ∈ E\Br(U). Let us define a class of sets as
follows:

Γ = {K ⊂ E| K is closed and connected,

U0 ∈ Br(U) ∩ E,U ∈ ∂E, U1, U2 ∈ E\Br(U)}.

By Lemma 2.2, we can choose a small radius r > 0 such that I(U0) >
I(U1) and I(U0) > I(U2), where U0 ∈ Br(U) ∩ E, U1, U2 ∈ E\Br(U).
Let us set

c = inf
K∈Γ

max
U∈K

I(U).
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We know that by the mountain pass theorem, c is the critical value of
I(u). Thus it remains to show that c > γ0. Let us set

Cγ = {U ∈ E| I(U) < γ}.

Suppose that c ≤ γ0. Then there is a closed and connected set K ∈ Γ
containing three points U0 ∈ Br(U)∩E, U ∈ ∂E and U1, U2 ∈ E\Br(U)
such that K ⊂ Cγ0+1. But we can choose a small number r > 0 such
that U0 ∈ Br(U) ∩ E and I(U0) > γ0 + 1. Then

max
U∈K

I(U) ≥ inf
K∈Γ

max
U∈K

> γ0 + 1,

which is absurd to the assumption that c ≤ γ0. Thus c > γ0. We prove
the theorem.
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