• Title/Summary/Keyword: boundary method

Search Result 7,444, Processing Time 0.035 seconds

Numerical Analysis of Internal Waves in Two-layer Fluids by a Two-domain Boundary Element Method (Two-domain 경계 요소법을 이용한 해양 내부파의 수치적 재현)

  • Koo, Weon-Cheol;Kim, Mi-Geun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.6-11
    • /
    • 2009
  • In this study, the internal waves in two-density layered fluids were analyzed using the Numerical Wave Tank (NWT) technique in the frequency domain. The NWT is based on a two-domain Boundary Element Method with the potential fluids using the whole-domain matrix scheme. From the mathematical solution of the two-domain boundary integral equation, two different wave modes could be classified: a surface wave mode and an internal wave mode, and each mode were shown to have a wave number determined by a respective dispersion relation. The magnitudes of the internal waves against surface waves were investigated for various fluid densities and water depths. The calculated results are compared with available theoretical data.

Temperature change around a LNG storage predicted by a three-dimensional indirect BEM with a hybrid integration scheme

  • Shi, Jingyu;Shen, Baotang
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.309-317
    • /
    • 2018
  • We employ a three-dimensional indirect boundary element method (BEM) to simulate temperature change around an underground liquefied natural gas storage cavern. The indirect BEM (IBEM) uses fictitious heat source strength on boundary elements as basic variables which are solved from equations of boundary conditions and then used to compute the temperature change at other points in the considered problem domain. The IBEM requires evaluation of singular integration for temperature change due to heat conduction from a constant heat source on a planar (triangular) region. The singularity can be eliminated by a semi-analytical integration scheme. However, it is found that the semi-analytical integration scheme yields sharp temperature gradient for points close to vertices of triangle. This affects the accuracy of heat flux, if they are evaluated by finite difference method at these points. This difficulty can be overcome by a combination of using a direct numerical integration for these points and the semi-analytical scheme for other points distance away from the vertices. The IBEM and the hybrid integration scheme have been verified with an analytic solution and then used to the application of the underground storage.

An Enhancement of Image Segmentation Using Modified Watershed Algorithm

  • Kwon, Dong-Jin
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.81-87
    • /
    • 2022
  • In this paper, we propose a watershed algorithm that applies a high-frequency enhancement filter to emphasize the boundary and a local adaptive threshold to search for minimum points. The previous method causes the problem of over-segmentation, and over- segmentation appears around the boundary of the object, creating an inaccurate boundary of the region. The proposed method applies a high-frequency enhancement filter that emphasizes the high-frequency region while preserving the low-frequency region, and performs a minimum point search to consider local characteristics. When merging regions, a fixed threshold is applied. As a result of the experiment, the proposed method reduced the number of segmented regions by about 58% while preserving the boundaries of the regions compared to when high frequency emphasis filters were not used.

Delineating the Prostate Boundary on TRUS Image Using Predicting the Texture Features and its Boundary Distribution (TRUS 영상에서 질감 특징 예측과 경계 분포를 이용한 전립선 경계 분할)

  • Park, Sunhwa;Kim, Hoyong;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.17 no.6
    • /
    • pp.603-611
    • /
    • 2016
  • Generally, the doctors manually delineated the prostate boundary seeing the image by their eyes, but the manual method not only needed quite much time but also had different boundaries depending on doctors. To reduce the effort like them the automatic delineating methods are needed, but detecting the boundary is hard to do since there are lots of uncertain textures or speckle noises. There have been studied in SVM, SIFT, Gabor texture filter, snake-like contour, and average-shape model methods. Besides, there were lots of studies about 2 and 3 dimension images and CT and MRI. But no studies have been developed superior to human experts and they need additional studies. For this, this paper proposes a method that delineates the boundary predicting its texture features and its average distribution on the prostate image. As result, we got the similar boundary as the method of human experts.

Simulation of Standing Wave using Boundary Element Method (경계요소법(境界要素法)을 이용한 중복파(重複波)의 재현(再現))

  • Oh, Young Min;Lee, Kil Seong;Chun, In Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1445-1451
    • /
    • 1994
  • To calculate the wave pressure acting on coastal structures under the design wave condition, it is often necessary to numerically reproduce the big standing wave profiles close to wave breaking condition. For this, the governing equation and all nonlinear terms occurring in boundary conditions should be effectively considered in the numerical wave profile. In particular, the velocity square term in the free surface boundary condition is very important. A boundary element method is applied here to calculate the standing wave profile with the velocity square term fully treated by Newton iterative method. In order to check the validity of the method, the numerical wave profiles are compared to ones calculated by the perturbation method, the Fourier approximation method and the hydraulic experiment.

  • PDF

An Efficient Contact Detection Algorithm for Contact Problems with the Boundary Element Method (경계요소법을 이용한 접촉해석의 효율적인 접촉면 검출기법)

  • Kim, Moon-Kyum;Yun, Ik-Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.439-444
    • /
    • 2009
  • This paper presents an efficient contact detection algorithm for the plane elastostatic contact problem of the boundary element method(BEM). The data structures of the boundary element method are dissected to develop an efficient contact detection algorithm. This algorithm is consists of three parts as global searching, local searching and contact relation setting to reflect the corner node problem. Contact master and slave type elements are used in global searching step and quad-tree is selected as the spatial decomposition method in local searching step. To set up contact relation equations, global contact searching is conducted at node level and local searching is performed at element level. To verify the efficiency of the proposed contact detection algorithm of BEM, numerical example is presented.

A New Formulation of the Reconstruction Problem in Neutronics Nodal Methods Based on Maximum Entropy Principle (노달방법의 중성자속 분포 재생 문제에의 최대 엔트로피 원리에 의한 새로운 접근)

  • Na, Won-Joon;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.193-204
    • /
    • 1989
  • This paper develops a new method for reconstructing neutron flux distribution, that is based on the maximum entropy Principle in information theory. The Probability distribution that maximizes the entropy Provides the most unbiased objective Probability distribution within the known partial information. The partial information are the assembly volume-averaged neutron flux, the surface-averaged neutron fluxes and the surface-averaged neutron currents, that are the results of the nodal calculation. The flux distribution on the boundary of a fuel assembly, which is the boundary condition for the neutron diffusion equation, is transformed into the probability distribution in the entropy expression. The most objective boundary flux distribution is deduced using the results of the nodal calculation by the maximum entropy method. This boundary flux distribution is then used as the boundary condition in a procedure of the imbedded heterogeneous assembly calculation to provide detailed flux distribution. The results of the new method applied to several PWR benchmark problem assemblies show that the reconstruction errors are comparable with those of the form function methods in inner region of the assembly while they are relatively large near the boundary of the assembly. The incorporation of the surface-averaged neutron currents in the constraint information (that is not done in the present study) should provide better results.

  • PDF

Polynomial Boundary Treatment for Wavelet Regression

  • Oh Hee-Seok;Naveau Philppe;Lee GeungHee
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.27-32
    • /
    • 2000
  • To overcome boundary problems with wavelet regression, we propose a simple method that reduces bias at the boundaries. It is based on a combination of wavelet functions and low-order polynomials. The utility of the method is illustrated with simulation studies and a real example. Asymptotic results show that the estimators are competitive with other nonparametric procedures.

  • PDF

LERAY-SCHAUDER DEGREE THEORY APPLIED TO THE PERTURBED PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.219-231
    • /
    • 2009
  • We show the existence of at least four solutions for the perturbed parabolic equation with Dirichlet boundary condition and periodic condition when the nonlinear part cross two eigenvalues of the eigenvalue problem of the Laplace operator with boundary condition. We obtain this result by using the Leray-Schauder degree theory, the finite dimensional reduction method and the geometry of the mapping. The main point is that we restrict ourselves to the real Hilbert space instead of the complex space.

  • PDF

A MEMORY TYPE BOUNDARY STABILIZATION FOR AN EULER-BERNOULLI BEAM UNDER BOUNDARY OUTPUT FEEDBACK CONTROL

  • Kang, Yong-Han;Park, Jong-Yeoul;Kim, Jung-Ae
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.947-964
    • /
    • 2012
  • In this paper, the memory type boundary stabilization for an Euler-Bernoulli beam with one end fixed and control at the other end is considered. We prove the existence of solutions using the Galerkin method and then investigate the exponential stability of solutions by using multiplier technique.