Delineating the Prostate Boundary on TRUS Image Using Predicting the Texture Features and its Boundary Distribution

TRUS 영상에서 질감 특징 예측과 경계 분포를 이용한 전립선 경계 분할

  • Park, Sunhwa (Gyeongsang National University, Dept. of Computer Science and Graduate School of CCBM) ;
  • Kim, Hoyong (Youngjin College, School of Computer Information) ;
  • Seo, Yeong Geon (Gyeongsang National University, Dept. of Computer Science and Graduate School of CCBM)
  • Received : 2016.12.15
  • Accepted : 2016.12.31
  • Published : 2016.12.31


Generally, the doctors manually delineated the prostate boundary seeing the image by their eyes, but the manual method not only needed quite much time but also had different boundaries depending on doctors. To reduce the effort like them the automatic delineating methods are needed, but detecting the boundary is hard to do since there are lots of uncertain textures or speckle noises. There have been studied in SVM, SIFT, Gabor texture filter, snake-like contour, and average-shape model methods. Besides, there were lots of studies about 2 and 3 dimension images and CT and MRI. But no studies have been developed superior to human experts and they need additional studies. For this, this paper proposes a method that delineates the boundary predicting its texture features and its average distribution on the prostate image. As result, we got the similar boundary as the method of human experts.

일반적으로 병원의 의사들은 눈으로 전립선 영상을 보고 수동으로 전립선과 배경의 경계를 구분하였다. 그러나 수동으로 자르는 과정은 너무 많은 시간을 소모하고 의사에 따라 다양한 경계가 추출되었다. 이런 문제를 줄이기 위해 자동 추출방식이 필요하게 되었지만, 전립선 경계의 정확한 추출은 작은 잡음이나 옅은 경계로 인하여 상당히 어려운 일이다. 지금까지 SVM, SIFT, 가버 텍스처 필터, 뱀형상 윤곽선 방법, 평균형상모델들과 같은 많은 연구가 진행되었다. 게다가, 2차원뿐만 3차원 영상, CT나 MRI 등에 관한 연구도 진행되었다. 하지만 아직까지 인간 전문가가 가진 경험을 뛰어 넘는 기술은 개발되지 않았으며, 많은 추가적인 연구를 필요로 하고 있다. 이에 본 논문에서는 전립선 영상의 경계의 평균적인 분포와 경계의 질감 특징을 예축하여 경계를 추출하는 방법을 제안한다. 실험 결과, 의사의 추출 방법과 유사한 경계를 얻을 수 있었다.



  1. A. Chakraborty, L. H. Staib, and J. S. Duncan, "Deformable boundary finding in medical images by integrating gradient and region information," IEEE Trans. Med. Imag., Vol. 15, No. 6, Dec. 1996, pp. 859-870.
  2. P. D. Grimm, J. C. Balsko, and H. Ragde, "Ultrasound guided transperineal implantation of iodine 125 and palladium 103 for the treatment of early stage prostate cancer," Atlas Urol. Clin. No. Amer., Vol. 2, 1994, pp. 113-125.
  3. Y.Zhan and D. Shen , "Deformable Segmentation of 3-D Ultrasound Prostate Images Using Statistical Texture Matching Method", IEEE Trans. on Medical Imaging, Vol. 25, March 2006, pp.245-255.
  4. S. D. Pathak, and etc., "Edge-guided boundary delineation in prostate ultrasound images", IEEE Trans. Med. Imag., Vol. 19, No. 12, Dec. 2000, pp. 1211-1219.
  5. D. Shen, Y. Zhan, and C. Davatzikos, "Segmentation prostate boundaries from ultrasound images using statistical shape model," IEEE Trans. Med. Imag., Vol. 22, No. 4, Apr. 2003, pp. 539-551.
  6. J. Park and etc., "A Prostate Segmentation of TRUS Image using Support Vectors and Snake-like Contour", Journal of The Korea Society of Computer and Information, Vol. 17, No. 12, pp. 101-109, Dec. 2012.
  7. S. Kim and etc., "A Prostate Segmentaiton of TRUS Image using Average Shape Model and SIFT Features", KIPS Transaction of Software and Data Engineering, Vol. 1, No. 3, pp. 187-194, Dec. 2012.
  8. S. Kim and etc., "A Prostate Segmentation using Gabor Texture Features and Snake-like Contour", Journal of Information Processing System, Vol. 9, No. 1, pp. 103-116, Mar. 2013.
  9. H. Kim and S. Hong, "Detecting the Prostate Boundary with Gabor Texture Features and Average Shape Model of TRUS Prostate Image", Journal of Digital Content Society, Vol. 16, No. 5, pp. 717-725, Oct. 2015.
  10. H. Akbari, X. Yang, L. Halig and B. Fei, "3D Segmentation of Prostate Ultrasound Images Using Wavelet Transform", Proc. of SPIE 7962, 2011.