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Polynomial Boundary Treatment for Wavelet Regression
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Abstract

To overcome boundary problems with wavelet regression, we propose a simple
method that reduces bias at the boundaries. It is based on a combination of
wavelet functions and low-order polynomials. The utility of the method is
illustrated with simulation studies and a real example. Asymptotic results show
that the estimators are competitive with other nonparametric procedures.
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1. Introduction

Consider a classical nonparametric regression problem involving data y;= Ai/n)+¢;
with 7=1,..., n, where errors are independent and identically distributed normal variables

with mean zero and variance o2 The true function f is assumed to be square integrable on
the interval [0,1].

Most nonparametric smoothing approaches such as kernel smoothers, trigonometric
regression and wavelet regression suffer from boundary or edge effects. To overcome
boundary problems when dealing with smooth functions, Eubank and Speckman (1990, 1991a)
suggested a simple method called polynomial-trigonometric regression, in which they write
the estimator of f as a sum of trigonometric function and a low-order polynomial. The latter
is expected to account for the boundary problem. They illustrated their approach  with
examples and showed that the rates of convergence for their estimators over a particular
smoothness class of functions are optimal, whether or not the regression function is periodic.
However, as noted by these authors, sharps peaks in the regression function can cause a
ringing phenomenon and other wiggles, and this limits the usefulness of
polynomial-trigonometric regression. To extend this procedure to functions with singularities, a
possible solution is to replace the trigonometric part of the estimator by an estimator based on
wavelets while keeping the polynomial part to model the boundaries. The choice of wavelets
as a replacement of the trigonometric part is a natural one since wavelets are well known to
be much more efficient than trigonometric functions when fitting curves with sharp features.

* Geophysical Statistics Projects, National Center for Atmospheric Research, Boulder,
Colorado 80307, U.S.A. ** The Bank of Korea. This work was supported in part by grants
from the UK. Engeneering and Physical Council and the U.S. National Science Foundation.



Polynomial Boundary Treatment for Wavelet Regression

In Section 2, a detailed description of the polynomial-wavelet regression method is
presented. The asymptotic properties of the method are discussed in Section 3. In Section 4,
the polynomial wavelet regression is tested on a pair of standard case-study functions and a
real data example is investigated.

2. Polynomial Wavelet Regression

Let {¢; 4 jeZ, keZ} be an orthonormal wavelet basis for L*(R) (Daubechies, 1992). Any

square integrable function can be then represented by the following expansion:
D= 2 coubiD+ 2 2 dibil) 1)
where ¢ () =2"24(2x—k) and ¢i0)=2 #24(2'x— k). Here the scaling and detail

coefficients are respectively equal to ¢ ,= f_ - A0 x)dx and  d; ,= f _mm R)¢; (x)dx.

From equation (1), we can express the following classical nonlinear wavelet regression estimator

Fam B G+ 2 2 Ty ), where Ta=sen( T max 0, T~ ) denotes
the soft-thresholded wavelet coefficients.
Donoho and Johnstone (1994, 1995) showed that fy with a properly chosen threshold

rule, has various important optimality properties. The choice of the shrinkage rule is
therefore crucial in wavelet regression. Several approaches to thresholding have been
studied. For example, Donoho and Johnstone (1994, 1995) proposed VisuShrink and
SureShrink as minimax approaches, Nason (1996) considered a cross validation method, and
Abramovich, Sapatinas and Silverman (1998) looked at a Bayesian thresholding rule,
BayesThresh. Such procedures will be used and compared in our simulation study.

To reduce the boundary effects present in classical wavelet regression, we propose the

estimator,
Tal= 2 @+ 2 Gob a0+ 53 2 Tl ®
where d is a positive integer. This new estimator takes the form,  Fpap(x)= Fp(x) + Flx),

where Fp(x) is a polynomial estimator of degree d and Fwis defined by (1). The motivation

behind (2) is based on an argument similar to the one given by Fubank and Speckman (1990,
1991a). Suppose that the regression function f satisfies some periodic boundary conditions, for

example f D)= £"(1), for I=0,.,m. Then the capacity of the wavelet estimator fy to
handle the boundary behaviour of f efficiently will improve as m increases. In real cases, such
boundary conditions are rarely satisfied and the estimator 7y is far from optimal at the
boundaries; See Fig. 1. Suppose now that P(x) denotes a polynomial of order m such that
POOY-PP (D) =7Y0)—r“(1), and rewrite the true function as f(x)= g(x)+P(x). The

difference is that the new function g(x) satisfies g?(0)=g‘" (1), and so the periodic
properties of the function g(x) are better suited to wavelet regression. Hence, decomposing the
signal into a polynomial and wavelet term should improve the fit at the boundaries.



2.3]4, Philppe Naveau, ©}Z3]

(a) (b)

5
RpopT-ny
- —y
= o e
- v

4 B o
rd -~
c4? «

~

00 02 04 06 08 10 12
1

1
00 02 04 06 08 10 12

Figure 1 (a) True function and simulated data; (b) The fit by polynomial-trigonometric
regression; (c) The fit by wavelet regression; (d) The fit by polynomial-wavelet regression. In
all cases, the dotted line denotes the true function.

In order to maintain orthogonality between the set of polynomial basis x,...,x¢ and the
wavelet basis, the equations f 2" x)dx= f 2"¢(x)dx=0 have to be satisfied for n=1,...d.

Wavelets with such properties were constructed by Daubechies (1992) and named coiflets.
Hence, use of a coiflet with at least d+1 vanishing moments in (2) implies that the
polynomial regression term is orthogonal to the wavelet regression term. A consequence is
that the d has to be smaller than the number of vanishing moments. In our application, we

will use a coiflet with 5 vanishing moments and 4<3. Eubank and Speckman (1990) fixed
d=2 for their applications. To estimate the parameters in (2), we first regress the

observations y; on the set x,...,x° for fixed d and then apply wavelet regression to the

residuals of the polynomial regression.
3. Asymptotic Properties

Donoho and & Johnstone (1994) studied the risk of the nonlinear estimator f defined
by (1), where risk is defined to be R(Fyf)=n"'F F3—f |> ie. the mean squared error.

They derived an upper bound, R(Fy,f)<(2logn+1){ R(S,f)+*/n}, where R(S,/

is the ideal risk obtained from the thresholding procedure. This means that it is possible to
come within a 2log n factor of the performance of ideal wavelet adaptation.
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Theorem 1. Suppose that there exists some positive integer m such that the derivatives f ([’(0)
and f (0(1) are well defined for 1=0,..,m. Then the bias of the estimator Fpy is reduced,

|ECT pw ) — f12<|E(F) — £ |2, its risk satisfies R(f;,f)SR(?p\[/.f)+_m:2, and thus the
"z}+ﬁ.

ideal wavelet adaptation inequality becomes R(F py, f )<(2logn+ 1)[ R(T,H+ 7 ”

This theorem shows that the cost associated with a reduction of the bias at the edges is
asymptotically small, mo?[n, and the estimator fpy maintains the excellent performance

obtained by classical wavelet shrinkage.
4. Simulations and an Application

To assess the numerical performance of (2), we select the Blocks function from the
standard test functions of Donoho and Johnstone (1994) as the periodic case, and a function
from Fan and Gijbels (1995) as the non-periodic case; See Fig. 2. The quality of each
estimator, corresponding to different ways of treating the boundaries as symmetric, periodic
or polynomial, was measured by computing the average and the standard error of the

mean squared error R F.H over 1000 simulations. Each simulation contains a sample of
256 observations contaminated by Gaussian white noise. As expected, Table 1 indicates that
polynomial-wavelet regression provides the best result for the function that departs the most
from symmetry and periodicity, i.e. a function from Fan & Gijbels (1995), and performs as
well as classical regression for the periodic case, i.e. the Blocks function.

Note that the boundary problem appears locally, near the edges, and so the mean
squared error, which is a global measure of quality of fit, does not necessarily describe the
gain obtained by polynomial wavelet regression. A natural estimator of local discrepancy is

R{F D=9 2u B(FKx)—fx)®  for e=1,...,[n/2], x=iln,
where Mo)={1,...,r,n—c+1,...,n}. Figure 3 shows that polynomial wavelet regression
applied to the function from Fan and Gijbels (1995) performs much better near boundaries,
i.e. with r small, than does classical wavelet regression, and it clearly indicates that the
polynomial term in (2) removes the artificial wiggles observed with classical wavelet
regression.
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Figure 2 (a) Blocks function and (b) the function from Fan and Gijbels (1995)
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Table 1 Estimated average and standard deviation, given in parentheses, of the risk using
the SureShrink (Sure), cross validation (CV) and BayesThresh (Bayes) thresholding rules over

1000 replications for different values of noise standard deviation ¢

Function Threshold ¢ PWR WR(P) WR(S)
Blocks Sure 0.3 0.0946 (0.0178) 0.0958 (0.0183) 0.0971 (0.0181)
0.5 0.2125 (0.0446) 0.2147 (0.0548) 0.2173 (0.0556)
0.7  0.8227 (0.0905) 0.8339 (0.0977) 0.8407 (0.0953)
eV 0.3 0.0755 (0.0102) 0.0752 (0.0100) 0.0769 (0.0101)
0.5 0.1634 (0.0202) 0.1633 (0.0197) 0.1682 (0.0201)
0.7 0.2853 (0.0371) 0.2855 (0.0371) 0.2959 (0.0379)
Bayes 0.3 0.0886 (0.0161) 0.0896 (0.0160) 0.0917 (0.0158)
0.5 0.2682 (0.0560) 0.2702 (0.0569) 0.2736 (0.0538)
0.7 0.4645 (0.0722) 0.4716 (0.0736) 0.4722 (0.0698)
F& G Sure 0.3 0.0182 (0.0043) 0.0360 (0.0065) 0.0222 (0.0047)
0.5 0.0623 (0,0132) 0.0854 (0.0153) 0.0722 (0.0142)
0.7 0.0982 (0.0224) 0.1461 (0.0323) 0.1163 (0.0238)
oV 0.3  0.0188 (0.0043) 0.0384 (0.0057) 0.0331 (0.0065)
0.5 0.0434 (0.0104) 0.0918 (0.0146) 0.0774 (0.0157)
0.7 0.0740 (0.0199) 0.1609 (0.0290) 0.1362 (0,0298)
Bayes 0.3  0.0150 (0.0038) 0.0317 (0.0062) 0.0198 (0.0043)
0.5 0.0322 (0.0090) 0.0696 (0.0127) 0.0435 (0.0098)
0.7 0.0516 (0.0141) 0.1144 (0.0277) 0.0702 (0.0158)

F & G: the function from Fan and Gijbels (1995) in Fig. 2(b)
PWR: polynomial-wavelet regression

WR(P): wavelet regression with periodic boundary treatment rule
WR(S): wavelet regression with symmetric boundary treatment rule.

We applied the polynomial-wavelet regression to the voltage drop data discussed by
Eubank and Speckman (1990). This dataset of 32 observations represents the voltage drop
in the battery of a guided missile motor during flight. Figure 4 shows that polynomial
wavelet regression provides a clear improvement near both boundaries.
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Figure 3 Risk R,(7 f) versus r for estimates of the function from Fan and Gijbels (1995)

based on BayesThresh and noise level ¢?=0.5. The solid line is for polynomial-wavelet
regression, the dotted line is for wavelet regression with periodic boundary correction, and
the dashed line is for wavelet regression with symmetric boundary correction.
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Figure 4 The fits of the voltage drop data. The x variable represents time.
Polynomial-wavelet regression is shown by the solid line, wavelet regression with periodic
boundary by the short dashed line, and wavelet regression with symmetric boundary
correction by the long dashed line.
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