• Title/Summary/Keyword: bone resorptive activity

Search Result 15, Processing Time 0.031 seconds

Bone Cell Response to Neurotransmitters and Mechanical Loading (신경전달물질 및 물리적 자극에 대한 뼈 세포의 반응)

  • Kwag, J.H.;Kim, B.G.;Kim, K.H.;Kim, C.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.89-93
    • /
    • 2009
  • Bone remodeling is a continuous process of skeletal renewal during which bone formation is tightly coupled to bone resorption. Mechanical loading is an important regulator of bone formation and resorption. In recent studies, neurotransmitters such as vasoactive intestinal peptide (VIP) were found to be present inside bone tissue and have been suggested to potentially regulate bone remodeling. In this study, our objective was to use a pre-established in vitro oscillatory fluid flow-induced shear stress mechanical loading system to quantify the effect of VIP on bone resorptive activity and investigate its combined effect with mechanical loading. VIP decreased osteoclastogenesis significantly decreased RANKL/OPG mRNA ration by approximately 90%. Combined VIP and mechanical loading further decreased RANKL/OPG ratio to approximately 95%. These results suggest that VIP present in bone tissue may synergistically act with mechanical loading to regulate bone remodeling via suppression of bone resorptive activities.

Effects of Artemisia princeps Extract on Bone Metabolism (애엽 추출물이 골 대사에 미치는 영향)

  • Lee, Seung-Min;Kim, Myung-Gyou;Lee, Seung-Youn;Kang, Tae-Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.3
    • /
    • pp.363-368
    • /
    • 2010
  • Artemisia princeps has been utilized as a traditional medicine for a variety of diseases in Korea. In this study, we investigated the effects of Artemisia princeps extract (APE) on bone metabolism both in vitro using primary mouse bone marrow-derived macrophage and in vivo using ovariectomized rats. APE decreased the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and TRAP activity. Also, APE inhibited bone resorptive activity of differentiated osteoclasts. In ovariectomized rats, APE alleviated the decrease in the trabecular bone mineral density. These results showed that APE might be useful for the prevention of postmenopausal bone loss.

The Effects of Hesperidin on the Proliferation and Activity of Bone Cells

  • Bae, Moon-Seo;Ko, Seon-Yle;Kim, Se-Won
    • International Journal of Oral Biology
    • /
    • v.31 no.4
    • /
    • pp.119-125
    • /
    • 2006
  • The importance of phytoestrogens to human health is currently being actively investigated. Hesperidin, abundantly found in citrus fruits, is known to possess antioxidant, anticancer, and anti-inflammatory effects. Recently, it has been reported that hesperidin inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. In our study, to determine the possible role of hesperidin in the regulation of bone metabolism, we observed the effects of hesperidin on the proliferation and activity of osteoblasts, as well as the effects of hesperidin on osteoclast generation and activity. We observed that, when treated with hesperidin, the number and viability of osteoblastic cells increased, alkaline phosphatase (ALP) activity of osteoblastic cells increased, and osteoprotegerin (OPG) secretion from MG63 cells decreased. Hesperidin treatment had no effect on the osteoclast generation and activity in the bone marrow cell culture, but decreased the number and resorptive activity of osteoclasts generated from RAW/264.7 cells. Taken together, these results indicate that hesperidin increases the proliferation and activity of osteoblasts, while inhibiting generation and activity of osteoclasts. Although the precise role of hesperidin remains to be elucidated, our study suggests that it is one of the important modulators of bone metabolism.

New understanding of glucocorticoid action in bone cells

  • Kim, Hyun-Ju
    • BMB Reports
    • /
    • v.43 no.8
    • /
    • pp.524-529
    • /
    • 2010
  • Glucocorticoids (GCs) are useful drugs for the treatment of various diseases, but their use for prolonged periods can cause severe side effects such as osteoporosis. GCs have a direct effect on bone cells, where they can arrest bone formation, in part through the inhibition of osteoblast. On the other hand, GCs potently suppress osteoclast resorptive activity by disrupting its cytoskeleton based on the inhibition of RhoA, Rac and Vav3 in response to macrophage colony-stimulating factor. GCs also interfere with microtubule distribution and stability, which are critical for cytoskeletal organization in osteoclasts. Thus, GCs inhibit microtubule-dependent cytoskeletal organization in osteoclasts, which, in the context of bone remodeling, further dampens bone formation.

BIOCOMPATIBILITY OF RETROGRADE FILLING MATERIALS (역충전재의 생체적합성에 관한 연구)

  • Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2000
  • The properties of ideal retrograde filling materials include the ability to seal the root canal system in three dimensions and well tolerated by periradicular tissues. Biocompatibility testing has been done mainly with cytotoxicity tests using cell culture. Little attention has been paid to the potential adverse influence on the inflammatory and immune reaction in the periapical tissue. The purpose of this study was to investigate the effects of retrograde filling materials on human mononuclear cells in vitro. Freshly mixed and set specimens from six materials (Z100, Tetric Ceram, Fuji II, Fuji II LC, F2000, Compoglass Flow, and ZOE) were eluated with cell culture medium for 24 hours. Cytotoxic effects of these extracts were evaluated by determining cell viability and enzyme activity using MTT and lactate dehydrogenase (LD). The production of inflammatoy bone resorptive cytokine, TNF-${\alpha}$ was measured from human peripheral blood mononuclear cells (PBMC) exposed to the extracts by means of Endogen Human TNF-${\alpha}$ ELISA kit (Wobrun, MA, U.S.A.). Eluates and diluted (1 : 10) eluates with cell culture medium from freshly mixed Fuji IT had cytotoxic effects on mononuclear cells using MTT and LD. However, eluates from set Fuji II were not cytotoxic. Eluates form set ZOE exhibited cytotoxicity with LD test. TNF-${\alpha}$ levels were high in eluates from freshly mixed Fuji II and Z100. Diluted eluates from freshly mixed Z100 and F2000 stimulated the production of TNF-${\alpha}$. However, there were no significant difference in TNF-${\alpha}$ levels compared to controls. These results indicate that some materials could possibly stimulate bone resorption in the periapical tissue by means of the production of bone resorptive cytokine.

  • PDF

Inhibitory Effect of Deer Antler on Osteoclastic Bone Resorption (파골세포의 골 흡수에 미치는 녹용의 억제효과)

  • Kim, Yun-Kyung;Choi, Yun-Hong;Song, Jeong-Hoon;Jang, Sung-Jo;Kim, Hyun-Jung;Lee, Chang-Hoon;Ahn, Ho-Seon;Lee, Ji-Eun;Kim, Jeong-Joong;Choi, Min-Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.6
    • /
    • pp.1299-1304
    • /
    • 2009
  • We have previously shown that water extract of deer antler (WEDA) inhibited RANKL-mediated osteoclast differentiation from bone marrow macrophages by suppressing c-Fos and NFATc1 expression. Thus, we examined the effect of WEDA in inflammation-induced bone loss in vivo. Here we found that WEDA inhibited osteoblast-supported osteoclast differentiation induced by lipopolysaccharide (LPS). However, WEDA did not suppress the expression of receptor activator of NF-${\kappa}B$ ligand (RANKL) in response to LPS in osteoblasts. WEDA also inhibited the bone resorptive activity of mature osteoclasts. To examine the effect of WEDA on bone loss, when LPS injected subcutaneously in mice, bone loss was greatly increased, but WEDA treatment inhibited LPS-mediated bone loss. Taken together, we conclude that WEDA inhibited osteoclast differentiation and bone resorption in vitro and in vivo. Thus WEDA may be useful in the treatment of bone-related disorders.

Berberine Chloride Inhibits Receptor Activator of $NF-{\kappa}B$ Ligand-induced Osteoclastogenesis via Preventing ERK Activation

  • Cheon, Myeong-Sook;Kim, Myung-Hee;Lee, Su-Ui;Ryu, Shi-Yong;Kim, Ho-Kyoung;Min, Yong-Ki;Kim, Seong-Hwan
    • Korean Journal of Oriental Medicine
    • /
    • v.13 no.2 s.20
    • /
    • pp.157-164
    • /
    • 2007
  • An imbalance in bone remodeling that is caused by increased bone resorption over bone formation leads to most adult skeletal diseases including osteoporosis. Since the development of anti-resorptive agents from natural substances has recently gained more interest in the treatment of osteoporosis, we evaluated the effects of 222 natural compounds on receptor activator of $NF-{\kappa}B$ ligand (RANKL)-induced of tartrate-resistance acid phosphatase (TRAP) activity in RAW264.7 murine macrophage cell, and found that berberine chloride is one of compounds inhibiting RANKL-induced TRAP activity. Berberine chloride significantly inhibited the RANKL-induced TRAP activity and the formation of multinucleated osteoclasts in a dose-dependent manner. In addition, berberine chloride prevented the RANKL-induced mRNA expression of TRAP, matrix metalloproteinase 9 and c-Src, which have been known to be highly expressed in the process of osteoclastogenesis. Interestingly, berberine chloride prevented the RANKL-induced activation of extracellular signal-regulated kinase (ERK) which is one of mitogen-activated protein (MAP) kinases. In conclusion, berberine chloride could inhibit the osteoclastogenesis via preventing the activation of ERK/MAP kinase signaling pathway.

  • PDF

THE EFFECTS OF HERBAL EXTRACTS ON PRODUCTION AND ACTIVlTY OF INTERLEUKIN 1${\beta}$ (생약추출물이 Intrerleukin-1 ${\beta}$의 생성 및 활성에 미치는 영향)

  • Cho, Ki-Yeong;Lee, Yong-Moo;Choi, Sang-Mook;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.386-396
    • /
    • 1995
  • Interieukin 1${\beta}$ is a potent bone resorptive cytokine which mediates soft tissue destruction through the stimulatidn of prostaglandin production and the induction of collagenase. This constellation of activities suggests a role of IL-1${\beta}$ in the pathogenesis of periodontal disease. The purpose of this study was to evaluate the effects of herbal extracts on production and activity of IL-1${\beta}$. When LPS was added to cultured human blood monocytes, the effects of herbal extracts on the production of IL-1${\beta}$ was evaluate by thymocyte stimulation assay. When rHuIL-1${\beta}$ was added to cultured human gingival fibroblasts, the effects of herbal extracts on production of $PGE_2$ was evaluated by ELISA and when it was added to cultured mouse calvaria, the effects on bone resorption was estimated by .$^{45}Ca$-release bone resorption assay. The herbal extracts that had been used in this study were as follows; Asparagi Radix, Schzandrae Fractus, Zizyphi Fractus and Rhois Galla. The following results were obtained from this study. 1. All these extracts effectively inhibited the production of IL-1${\beta}$ on cultured human blood monocytes. 2. All these extracts effectively inibited the production of $PGE_2$ on cultured human gingival fibroblasts. 3. All these extracts did not effectively inhibit the bone resorption induced by rHulL-1${\beta}$ on cultured mouse calvaria.

  • PDF

The Effect of Risedronate on Posterior Lateral Spinal Fusion in a Rat Model

  • Gezici, Ali Riza;Ergun, Ruchan;Gurel, Kamil;Yilmaz, Fahri;Okay, Onder;Bozdogan, Omer
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.1
    • /
    • pp.45-51
    • /
    • 2009
  • Objective : To evaluate the potential effects of risedronate (RIS) which shows a higher anti-resorptive effect among bisphosphonates, after a posterolateral lumbar intertransverse process spinal fusion using both autograft and allograft in a rat model. Methods : A totoal of 28 Sprague-Dawley rats were randomized into 2 study groups. A posterolateral lumbar intertransverse process spinal fusion was peformed using both autograft and allograft in a rat model. Group I (control) received 0.1 mL of steril saline (placebo) and Group II (treatment) received risedronate, equivalent to human dose (10 ${\mu}g$/kg/week) for 10-weeks period. Results : The fusion rates as determined by manual palpation were 69% in the group I and 46% in the group II (p = 0.251). According to radiographic score, the spinal segment was considered to be fused radiographically in 7 (53%) of the 13 controls and 9 (69%) of the 13 rats treated with RIS (p = 0.851). The mean histological scores were 5.69 ${\pm}$ 0.13 and 3.84 ${\pm}$ 0.43 for the control and treatment groups, respectively. There was a significant difference between the both groups (p = 0.001). The mean bone density of the fusion masses was 86.9 ${\pm}$ 2.34 in the control group and 106.0 ${\pm}$ 3.54 in the RIS treatment group. There was a statistical difference in mean bone densities of the fusion masses comparing the two groups (p=0.001). Conclusion : In this study, risedronate appears to delay bone fusion in a rat model. This occurs as a result of uncoupling the balanced osteoclastic and osteoblastic activity inherent to bone healing. These findings suggest that a discontinuation of risedronate postoperatively during acute fusion period may be warranted.

2-(Trimethylammonium) Ethyl (R)-3-Methoxy-3-oxo-2-Stearamidopropyl Phosphate Suppresses Osteoclast Maturation and Bone Resorption by Targeting Macrophage-Colony Stimulating Factor Signaling

  • Park, So Jeong;Park, Doo Ri;Bhattarai, Deepak;Lee, Kyeong;Kim, Jaesang;Bae, Yun Soo;Lee, Soo Young
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.628-635
    • /
    • 2014
  • 2-(Trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient megakaryopoiesis. Here, we show that (R)-TEMOSPho blocks osteoclast maturation from progenitor cells of hematopoietic origin, as well as blocking the resorptive function of mature osteoclasts. The inhibitory effect of (R)-TEMOSPho on osteoclasts was due to a disruption of the actin cytoskeleton, resulting from impaired downstream signaling of c-Fms, a receptor for macrophage-colony stimulating factor linked to c-Cbl, phosphoinositol-3-kinase (PI3K), Vav3, and Rac1. In addition, (R)-TEMOSPho blocked inflammation-induced bone destruction by reducing the numbers of osteoclasts produced in mice. Thus, (R)-TEMOSPho may represent a promising new class of antiresorptive drugs for the treatment of bone loss associated with increased osteoclast maturation and activity.