Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0190

2-(Trimethylammonium) Ethyl (R)-3-Methoxy-3-oxo-2-Stearamidopropyl Phosphate Suppresses Osteoclast Maturation and Bone Resorption by Targeting Macrophage-Colony Stimulating Factor Signaling  

Park, So Jeong (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University)
Park, Doo Ri (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University)
Bhattarai, Deepak (BK21 Plus R-FIND Team, College of Pharmacy, Dongguk University)
Lee, Kyeong (BK21 Plus R-FIND Team, College of Pharmacy, Dongguk University)
Kim, Jaesang (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University)
Bae, Yun Soo (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University)
Lee, Soo Young (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University)
Abstract
2-(Trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient megakaryopoiesis. Here, we show that (R)-TEMOSPho blocks osteoclast maturation from progenitor cells of hematopoietic origin, as well as blocking the resorptive function of mature osteoclasts. The inhibitory effect of (R)-TEMOSPho on osteoclasts was due to a disruption of the actin cytoskeleton, resulting from impaired downstream signaling of c-Fms, a receptor for macrophage-colony stimulating factor linked to c-Cbl, phosphoinositol-3-kinase (PI3K), Vav3, and Rac1. In addition, (R)-TEMOSPho blocked inflammation-induced bone destruction by reducing the numbers of osteoclasts produced in mice. Thus, (R)-TEMOSPho may represent a promising new class of antiresorptive drugs for the treatment of bone loss associated with increased osteoclast maturation and activity.
Keywords
antiresorptive drugs; bone destruction; osteoclast; osteoclast maturation; (R)-TEMOSPho;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sakai, H., Chen, Y., Itokawa, T., Yu, K.P., Zhu, M.L., and Insogna, K. (2006). Activated c-Fms recruits Vav and Rac during CSF-1-induced cytoskeletal remodeling and spreading in osteoclasts. Bone 39, 1290-1301.   DOI   ScienceOn
2 Schmidt, A., and Hall, A. (2002). Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16, 1587-1609.   DOI   ScienceOn
3 Grey, A., Chen, Y., Paliwal, I., Carlberg, K., and Insogna, K. (2000). Evidence for a functional association between phosphatidylinositol 3-kinase and c-src in the spreading response of osteoclasts to colony-stimulating factor-1. Endocrinology 141, 2129-2138.   DOI
4 Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509-514.   DOI   ScienceOn
5 Harada, S., and Rodan, G.A. (2003). Control of osteoblast function and regulation of bone mass. Nature 423, 349-355.   DOI   ScienceOn
6 Hogan, P.G., Chen, L., Nardone, J., and Rao, A. (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205-2232.   DOI   ScienceOn
7 Kim, Y.A., Chung, H.M., Park, J.S., Choi, W., Min, J., Park, N.H., Kim, K.H., Jhon, G.J., and Han, S.Y. (2003). Synthesis of novel lysophosphatidylcholine analogues using serine as chiral template. J. Org. Chem. 68, 10162-10165.   DOI   ScienceOn
8 Kodama, H., Nose, M., Niida, S., and Yamasaki, A. (1991). Essential role of macrophage colony-stimulating factor in the osteoclast differentiation supported by stromal cells. J. Exp. Med. 173, 1291-1294.   DOI   ScienceOn
9 Kwak, H.B., Lee, S.W., Li, Y.J., Kim, Y.A., Han, S.Y., Jhon, G.J., Kim, H.H., and Lee, Z.H. (2004). Inhibition of osteoclast differentiation and bone resorption by a novel lysophosphatidylcholine derivative, SCOH. Biochem. Pharmacol. 67, 1239-1248.   DOI   ScienceOn
10 Lee, S.H., Rho, J., Jeong, D., Sul, J.Y., Kim, T., Kim, N., Kang, J.S., Miyamoto, T., Suda, T., Lee, S.K., et al. (2006). v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 12, 1403-1409.
11 Leibbrandt, A., and Penninger, J.M. (2009). RANKL/RANK as key factors for osteoclast development and bone loss in arthropathies. Adv. Exp. Med. Biol. 649, 100-113.   DOI
12 Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342.   DOI   ScienceOn
13 Burgess, T.L., Qian, Y., Kaufman, S., Ring, B.D., Van, G., Capparelli, C., Kelley, M., Hsu, H., Boyle, W.J., Dunstan, C.R., et al. (1999). The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J. Cell Biol. 145, 527-538.   DOI   ScienceOn
14 Adapala, N.S., Barbe, M.F., Langdon, W.Y., Tsygankov, A.Y., and Sanjay, A. (2010). Cbl-phosphatidylinositol 3 kinase interaction differentially regulates macrophage colony-stimulating factor-mediated osteoclast survival and cytoskeletal reorganization. Ann. N Y Acad. Sci. 1192, 376-384.   DOI   ScienceOn
15 Crabtree, G.R., and Olson, E.N. (2002). NFAT signaling: choreographing the social lives of cells. Cell 109 S67-79.   DOI   ScienceOn
16 Etienne-Manneville, S., and Hall, A. (2002). Rho GTPases in cell biology. Nature 420, 629-635.   DOI   ScienceOn
17 Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., and Martin, T.J. (1999). Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345-357.   DOI
18 Faccio, R., Teitelbaum, S.L., Fujikawa, K., Chappel, J., Zallone, A., Tybulewicz, V.L., Ross, F.P., and Swat, W. (2005). Vav3 regulates osteoclast function and bone mass. Nat. Med. 11, 284-290.   DOI   ScienceOn
19 Faccio, R., Takeshita, S., Colaianni, G., Chappel, J., Zallone, A., Teitelbaum, S.L., and Ross, F.P. (2007). M-CSF regulates the cytoskeleton via recruitment of a multimeric signaling complex to c-Fms Tyr-559/697/721. J. Biol. Chem. 282, 18991-18999.   DOI   ScienceOn
20 Fuller, K., Owens, J.M., Jagger, C.J., Wilson, A., Moss, R., and Chambers, T.J. (1993). Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J. Exp. Med. 178, 1733-1744.   DOI   ScienceOn
21 Teitelbaum, S.L. (2007). Osteoclasts: what do they do and how do they do it? Am. J. Pathol. 170, 427-435.   DOI   ScienceOn
22 Vaananen, H.K., Zhao, H., Mulari, M., and Halleen, J.M. (2000). The cell biology of osteoclast function. J. Cell Sci. 113, 377-381.
23 Wiktor-Jedrzejczak, W., Bartocci, A., Ferrante, A.W. Jr., Ahmed-Ansari, A., Sell, K.W., Pollard, J.W., and Stanley, E.R. (1990). Total absence of colony-stimulating factor 1 in the macrophagedeficient osteopetrotic (op/op) mouse. Proc. Natl. Acad. Sci. USA 87, 4828-4832.   DOI   ScienceOn
24 Razzouk, S., Lieberherr, M., and Cournot, G. (1999). Rac-GTPase, osteoclast cytoskeleton and bone resorption. Eur. J. Cell Biol. 78, 249-255.   DOI   ScienceOn
25 Limb, J.K., Song, D., Jeon, M., Han, S.Y., Han, G., Jhon, G.J., Bae, Y.S., and Kim, J. (2012). 2-(Trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate promotes megakaryocytic differentiation of myeloid leukaemia cells and primary human CD34(+) haematopoietic stem cells. J. Tissue Eng. Regen. Med. [Epub ahead of print]
26 Marks, S.C. Jr., Wojtowicz, A., Szperl, M., Urbanowska, E., MacKay, C.A., Wiktor-Jedrzejczak, W., Stanley, E.R., and Aukerman, S.L. (1992). Administration of colony stimulating factor-1 corrects some macrophage, dental, and skeletal defects in an osteopetrotic mutation (toothless, tl) in the rat. Bone 13, 89-93.   DOI   ScienceOn
27 Pixley, F.J. and Stanley, E.R. (2004). CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 14, 628-638.   DOI   ScienceOn
28 Ridley, A.J. (2001a). Rho family proteins: coordinating cell responses. Trends Cell Biol. 11, 471-477.   DOI   ScienceOn
29 Ridley, A.J. (2001b). Rho GTPases and cell migration. J. Cell Sci. 114, 2713-2722.
30 Ross, F.P. (2006). M-CSF, c-Fms, and signaling in osteoclasts and their precursors. Ann. N Y Acad. Sci. 1068, 110-116.   DOI   ScienceOn
31 Teitelbaum, S.L. (2000). Bone resorption by osteoclasts. Science 289, 1504-1508.   DOI   ScienceOn
32 Suda, T., Jimi, E., Nakamura, I., and Takahashi, N. (1997). Role of 1 alpha,25-dihydroxyvitamin D3 in osteoclast differentiation and function. Methods Enzymol. 282, 223-235.   DOI
33 Karsenty, G., and Wagner, E.F. (2002). Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2, 389-406.   DOI   ScienceOn
34 Dai, X.M., Ryan, G.R., Hapel, A.J., Dominguez, M.G., Russell, R.G., Kapp, S., Sylvestre, V., and Stanley, E.R. (2002). Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111-120.   DOI   ScienceOn