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Glucocorticoids (GCs) are useful drugs for the treatment of var-
ious diseases, but their use for prolonged periods can cause se-
vere side effects such as osteoporosis. GCs have a direct effect 
on bone cells, where they can arrest bone formation, in part 
through the inhibition of osteoblast. On the other hand, GCs 
potently suppress osteoclast resorptive activity by disrupting its 
cytoskeleton based on the inhibition of RhoA, Rac and Vav3 in 
response to macrophage colony-stimulating factor. GCs also 
interfere with microtubule distribution and stability, which are 
critical for cytoskeletal organization in osteoclasts. Thus, GCs 
inhibit microtubule-dependent cytoskeletal organization in os-
teoclasts, which, in the context of bone remodeling, further 
dampens bone formation. [BMB reports 2010; 43(8): 524-529]

INTRODUCTION

GCs are potent anti-inflammatory and immunosuppressive 
drugs. As such, synthetic GCs have been widely used for many 
decades for the treatment of various disorders such as auto-
immune, pulmonary, periodontal, and gastrointestinal disease. 
Although GCs effectively suppress inflammation, its use is ac-
companied by bone loss leading to osteoporosis, particularly 
when applied for long time periods. It has been reported that 
bone loss occurs with a rapid phase of about 12% within the 
first year of GC administration, followed by a slow phase of 
2-5% annually (1, 2). About 30-50% of patients receiving 
long-term GC therapy suffer severe fractures (3). 

GCs have indirect skeletal effects such as decreased calcium 
absorption in renal tubes and the intestine as well as sup-
pressed synthesis of sex hormones, all of which theoretically 
induce secondary hyperparathyroidism. Although these in-
direct effects are considered as a contributory mechanism in 
the pathogenesis of GC-induced osteoporosis, accumulating 
evidence has shown that GC therapy does not develop secon-
dary hyperparathyroidism (4-6). Nonetheless, the direct effects 
of GCs on bone are clear. Therefore, this review summarizes 

the molecular effects of GCs on bone cells, specifically on 
osteoclasts.

Cellular action of the GC receptor

In general, GCs mediate their biological effects through the in-
teractions of their cognate receptor, the glucocorticoid re-
ceptor (GR), a member of the nuclear receptor superfamily (7, 
8). The GR has a modular structure consisting of an N-terminal 
domain (NTD), a DNA-binding domain (DBD) and a C-termi-
nal ligand-binding domain (LBD) (9, 10). In the absence of li-
gand, GR resides in the cytoplasm as an inactive complex con-
taining molecular chaperons such as heat shock proteins. 
Ligand binding results in dissociation of this multi-protein com-
plex along with conformational changes of the GR protein. GR 
then translocates into the nucleus where it regulates the ex-
pression of its target gene through several different pathways 
(Fig. 1).

GR can activate gene transcription by directly binding to 
glucocorticoid response elements (GREs) in the promoter re-
gion of its target genes. This type of regulation has been shown 
in various genes such as tyrosine aminotransferase, glucocorti-
coid-induced leucine zipper and phosphoenolpyruvate carbox-
ylase (11). On the other hand, GR also binds to negative GREs 
(nGREs), which mediate the DNA binding-dependent repre-
ssion of target gene expression. For example, pro-opiomelano-
cortin (12), osteocalcin (13) and with-no-lysine (K) kinase-4 
(WNK4) (14) contains nGREs. Alternatively, GR can regulate 
gene expression via protein-protein interactions. In this case, 
GR associates with other transcription factors such as NF-κB, 
AP-1, T-bet, GATA-3, NFAT and IRF3, all of which are involved 
in the expression of inflammatory cytokines (15-18). Since GR 
inhibits these inflammation-associated proteins, GCs are wide-
ly used for the treatment of inflammation-related diseases.

Glucocorticoids and osteoblasts

GCs inhibit osteoblasts, bone-forming cells, in vivo through 
the induction of apoptosis, which leads to the suppression of 
bone formation (2, 19). Consistent with these in vivo ob-
servations, GCs also promote the apoptosis of osteoblasts and 
osteocytes in vitro via the activation of caspase-3 (20-23). In 
addition, GCs decrease the number of osteoblasts by inhibiting 
the pool of cells available for differentiation into osteoblasts 
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Fig. 1. Action modes of the glucocorticoid receptor. Upon GC 
binding, GR dissociates from heat shock protein (Hsp) and trans-
locates into the nucleus. The GR as a dimmer can interact with 
GC response elements and activate target gene expression (a), 
whereas binding of GR to negative GC response elements leads 
to repression of target gene transcription (b). As a monomer, GR 
interacts directly with other transcription factors such as AP-1 and 
NF-κB and suppresses gene transcription (c). GC, glucocorticoid;
GR, glucocorticoid receptor; Hsp, heat shock protein; TF, transcrip-
tion factor.

(24). GCs further blunt the differentiation of mesenchymal 
cells into osteoblasts, resulting in a decreased number of ma-
ture osteoblasts (25-27). GCs accelerate the shift of bone mar-
row stromal cells toward adipocyte lineage cells via the en-
hanced expression of peroxisome proliferator-activated re-
ceptor γ, which is an important transcription factor for adipo-
genesis (26, 28-30).

Although GCs clearly inhibit osteoblast formation in vivo, 
some studies have revealed that exposure to GCs actually pro-
motes the formation of mineralized bone nodules in vitro 
(31-33), indicating that another inhibitory mechanism is active 
during the suppression of bone formation by GCs in vivo.

Glucocorticoids and osteoclasts

Osteoclasts are derived from hematopoietic precursors of the 
monocyte/macrophage lineage (34). Two cytokines, macro-
phage colony-stimulating factor (M-CSF) and receptor activator 
of NF-κB ligand (RANKL) are essential for osteoclast development.

It has been reported that GCs induce the expression of 

RANKL (35) and M-CSF (36) but down-regulate osteoproteger-
in (OPG), a decoy receptor of RANKL. Based on these data, 
GCs would increase the bone-resorption activity of osteoclasts. 
However, histomorphometric analysis in patients receiving GC 
therapy indicated a reduction of both bone resorption and 
bone formation (2, 37, 38). On the other hand, treatment with 
synthetic GCs, dexamethasone suppresses the formation of tar-
trate-resistant acid phosphatase (TRAP)-positive multinucleated 
osteoclasts by downregulating β3 integrin, which is essential 
in the modulation of the cytoskeleton (39). Importantly, our re-
cent studies using GR-deficient mice in osteoclast lineage cells 
have provided a new paradigm for the mechanism of GC-in-
duced osteoporosis (40).

GC effects on osteoclast apoptosis and differentiation

It has been reported that GCs prolong the life span of mature 
osteoclasts (41, 42). Similarly, in a study with mice lacking the 
GR, the addition of synthetic GCs promotes the survival of 
wild-type (WT) osteoclasts but does not affect cells lacking GR 
(40). On the other hand, GCs do not impact osteoclast differ-
entiation in either WT or GR-deficient KO mice, as determined 
by the expression of osteoclastogenic markers including TRAP, 
MMP-9 and Cathepsin K.

GC effects on osteoclast cytoskeleton

Bone resorption is a hallmark of osteoclasts and is initiated by 
the attachment of mature resorptive cells to the bone surface 
(34, 43, 44). Upon bone matrix recognition, osteoclasts begin 
to organize their cytoskeleton, leading to the formation of a 
unique actin ring or sealing zone. These events are pivotal for 
the bone resorptive activity of mature osteoclasts. It is known 
that several cytokines including M-CSF, RANKL, TNF-α and 
IL-1α induce actin reorganization in mature osteoclasts (45-47). 
Although GCs do not impair actin rings of GR-deficient osteo-
clasts, they specifically inhibit MCF-induced actin ring for-
mation in WT osteoclasts, but not RANKL, TNF-α and IL-1α 
mediated actin ring formation (40). 

The Rho family of small GTPases including Rho and Rac is 
important for actin cytoskeletal organization and therefore 
plays a critical role in the bone resorptive activity of mature os-
teoclasts (48). The expression of constitutively active RhoA ac-
celerates podosome and stress fiber formation, osteoclast mo-
tility and bone resorption, whereas a dominant negative form 
of RhoA and C3 exoenzyme, which specifically inactivates 
Rho proteins, blocks these events (49). Like Rho, Rac plays an 
important role in actin ring formation. Rac1-deficient mice 
show increased trabecular bone volume and trabeculae num-
ber due to defective actin cytoskeletal organization (50). Re-
flecting the inhibitory effect of steroids on actin ring formation, 
GCs completely arrest M-CSF-induced activity of GTPases (40).

Rho GTPases transit between an activated GTP-bound and 
inactivated GDP-bound state. This transition is regulated by 
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Fig. 2. Effects of GCs on bone remo-
deling. (A) Normal bone remodeling. 
Activated osteoclasts resorb old bone 
matrix. Subsequently, osteoblasts mi-
grate into the resorption lacuna, by 
factors produced by the osteoclasts or 
released from the bone. Osteoblasts 
then synthesize new bone. (B) Abnormal
bone remodeling caused by GC excess.
GCs directly inhibit osteoblasts. In ad-
dition, GCs arrest osteoclast function 
by suppressing its cytoskeletal organ-
ization and microtubule acetylation, 
which, in terms of bone remodeling, 
leads to failed recruitment and activa-
tion of osteoblasts, further reducing 
bone formation.

GTPase-activating proteins (GAPs) and guanine nucleotide ex-
change factors (GEFs). While GAPs stimulate intrinsic GTPase 
activity, GEFs convert Rho GTPases from their inactive GDP- 
bound form to their active GTP-bound form (51-53). Vav fam-
ily proteins including Vav1, Vav2 and Vav3 are examples of 
GEFs. Among them, Vav3 is critical for cytoskeletal organ-
ization in osteoclasts. Vav3-deficient mice have increased bone 
mass due to impaired bone resorptive activity. Osteoclasts de-
rived from Vav3-null mice show the defect in M-CSF-induced 
Rac activation in vitro, resulting in failed organization of their 
cytoskeleton (54). Similar to the effects of GCs on Rho and Rac 
activation, GCs suppress M-CSF-mediated Vav3 activation as 
well. Thus, GCs arrest organization of osteoclast cytoskeleton 
by inhibiting M-CSF-induced Vav3 activation and therefore 
Rac activation (40).

It is known that GCs exert their effects via genomic or non- 
genomic mechanisms. The non-genomic effects occur within a 
few seconds to a few minutes and are mediated by mem-
brane-bound GR or by direct interactions with biological 
membranes (55). Since GC-mediated suppression of Vav3 re-
quires 16 hours, GCs exert their inhibitory effect on organiza-
tion of osteoclast cytoskeleton through a genomic mechanism.

GC effects on osteoclast microtubule distribution and 
stability

Cytoskeletal organization in osteoclasts requires an intact mi-

crotubule network (56, 57). We found that GCs interfere with 
the distribution of microtubules in mature osteoclasts (Hong et 
al., unpublished). GC-untreated control cells contain charac-
teristic radial microtubules which are enriched around the ac-
tin ring. In contrast, GC-treated osteoclasts possess an irregu-
larly shaped microtubule network that is not concentrated at 
the periphery of the osteoclast. In addition to intact micro-
tubule distribution, the stability of microtubules is also critical 
for cytoskeletal organization in mature osteoclasts (56, 57). 
The level of microtubule acetylation reflects the stability of 
microtubules. We observed that GC-treated osteoclasts contain 
very few acetylated microtubules (Hong et al., unpublished). 
Thus, GCs suppress the stability and distribution of micro-
tubules in osteoclasts and therefore regulate microtubule- 
dependent organization of the cytoskeleton, which in turn in-
hibits osteoclast resorptive activity.

GC effects on bone remodeling

The adult skeleton constantly undergoes bone remodeling, an 
event which replaces old bone with new. Bone remodeling is 
initiated by osteoclasts that absorb the old bone matrix, fol-
lowed by movement of osteoblast precursors into the resorp-
tion lacuna and the synthesis of new bone matrix. In the con-
text of bone remodeling, a bone formation assay was per-
formed using double tetracycline labeling. While GC-treated 
WT mice show reduced levels of bone formation and bio-



New understanding of glucocorticoid action in bone cells
Hyun-Ju Kim

527http://bmbreports.org BMB reports

chemical markers including osteocalcin and alkaline phospha-
tase, GR-deficient mice are protected from GC-mediated sup-
pression of bone formation (40). Thus, GCs cause abnormal 
bone remodeling by blunting the cytoskeletal organization of 
osteoclasts, which further suppresses bone formation and ulti-
mately induces osteoporosis.

CONCLUSION

GC-induced bone loss is the most common cause of secondary 
osteoporosis. GCs impact bone directly. GCs suppress osteo-
blast cell number, differentiation and function. Furthermore, 
GCs potently inhibit osteoclast function, which, in the context 
of bone remodeling, leads to the additional suppression of os-
teoblast function (Fig. 2). Thus, GCs arrest bone formation by 
inhibiting osteoclast activation, which is an initial event during 
bone remodeling. Recently, we have identified target mole-
cules downstream of GCs using microarray analysis. The role 
of target molecules of GCs in osteoclasts is currently under in-
vestigation (Hong et al., unpublished data). These studies will 
provide insights into the molecular mechanism by which GCs 
arrest bone resorptive function in osteoclasts.
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