• 제목/요약/키워드: bond effect

검색결과 1,652건 처리시간 0.03초

키토산/카프로락탐 혼합체에 대한 수분의 영향 (Effect of Moisture on Molecular Motions of Chitosan/Polycaprotactam Blends)

  • 리아로센-쿤;훙치치;린망풍
    • 폴리머
    • /
    • 제28권5호
    • /
    • pp.433-443
    • /
    • 2004
  • 키토산과 폴리카프로락탐 (PA6) 복합체의 박막을 개미산을 사용하여 만들었다. FT-IR 분광학적 자료는 키토산의 히드록시기와 PA6의 아마이드기 사이의 수소 결합이 형성되었음을 보여주었다. 열무게분석법은 혼합체 시료는 수분을 포함하고 있음을 나타내었다. 시료 속의 물의 분산은 저장 탄성률 (E')을 크게 감소한다고 DMA 결과는 보여주었다. 혼합체 시료의 기게적 손실 탄젠트 (tan $\delta$) 자료는 $\beta$d 손실 피크가 $0^{\circ}C$ 부근에서 나타남을 보여주었다. 혼합체 시료들은 진공에서 완전히 건조하였고 그 다음 소위 w-다리를 만드는 물을 흡수할 수 있도록 높은 습도 속에 두었다. 이 시료들의 E' 자료는 비정상적으로 증가하였고 $50^{\circ}C$ 부근에서 손실 피크의 어깨에 추가적인 손실 피크가 나타났다. 건조한 조건하에서는, 40/60 혼합 비율의 키토산/PA6가 두 성분의 섞임성이 더 좋았다.

Au 스터드 범프와 Sn-3.5Ag 솔더범프로 플립칩 본딩된 접합부의 미세조직 및 기계적 특성 (Interfacial Microstructure and Mechanical Property of Au Stud Bump Joined by Flip Chip Bonding with Sn-3.5Ag Solder)

  • 이영규;고용호;유세훈;이창우
    • Journal of Welding and Joining
    • /
    • 제29권6호
    • /
    • pp.65-70
    • /
    • 2011
  • The effect of flip chip bonding parameters on formation of intermetallic compounds (IMCs) between Au stud bumps and Sn-3.5Ag solder was investigated. In this study, flip chip bonding temperature was performed at $260^{\circ}C$ and $300^{\circ}C$ with various bonding times of 5, 10, and 20 sec. AuSn, $AuSn_2$ and $AuSn_4$ IMCs were formed at the interface of joints and (Au, Cu)$_6Sn_5$ IMC was observed near Cu pad side in the joint. At bonding temperature of $260^{\circ}C$, $AuSn_4$ IMC was dominant in the joint compared to other Au-Sn IMCs as bonding time increased. At bonding temperature of $300^{\circ}C$, $AuSn_2$ IMC clusters, which were surrounded by $AuSn_4$ IMC, were observed in the solder joint due to fast diffusivity of Au to molten solder with increased bonding temperature. Bond strength of Au stud bump joined with Sn-3.5Ag solder was about 23 gf/bump and fracture mode of the joint was intergranular fracture between $AuSn_2$ and $AuSn_4$ IMCs regardless bonding conditions.

태생기 및 신생기의 Phosphatidylcholine 보충기 기억력 향상에 미치는 영향 -전뇌기저부의 Choline성 신경세포 활성에 관한 연구- (Evidence of Memory Improvement by Phosphatidylcholine Supplement at Fetus and Neonate -Studies of Basal Forebrain Cholinerge Neuronal Activities-)

  • 전영희
    • Journal of Nutrition and Health
    • /
    • 제32권8호
    • /
    • pp.864-869
    • /
    • 1999
  • To investigate the effect of dietary phosphatidylcholine(PPC) supplement on memory improvement, biochemical study on the brain, and morphometric studies on the cholinergic neurons in the rat basal forebrain were undertaken. The pregnancy rats were divided into the normal control, the choline deficient and the PPC supplemental groups according to quantity of the PPC in diet. According to choline deficiency and PPC supplement after birth, the neonate rate of the normal control group were subdivided into the control diet(N-N) and the PPC supplied (N-S) groups, the choline deficient group were subdivided into the continually deficient (D-D), the control diet(D-N) and the PPC supplied groups(D-S), and the PPC supplemental group were subdivided into the control diet (S-N)and the continually supplied (S-S)group. The PPC supplemented diet was added 2% egg PPC in AIN 76 formula diet. PPC concentrations and cholinesterase(CE) activities were measured in the serum, the liver and the brain, respectively. Immunohistochemical stains for choline acetyltransferase(ChAT) was employed for the morphological and morphometric studies. The maze test was undertaken to evaluate memory improvement. PPC concentration and CE activities in the serum, liver and the brain were high in the PPC supplemental groups and low in the choline deficient groups. ChAT immunoreactivity neurons at the medial septal diagonal bond complex and the basal forebrain nucleus of Meynert were reduced in the choline deficient groups. Average failure rate for the maze test was the lowest in the S-S group and the highest in the D-D group. Insufficient choline suppley during the neuronal development would result in cholinergic neuronal damage, which could be prevented by adequate PPC supplement. It is consequently suggested that PPC supplement may be effective on memory improvement by maintaining the cholinergic neuronal activity in the basal forebrain of the rats.

  • PDF

1, 25(OH)$_2$-23ene-$D_3$ : in vitro에서 U937 세포의 증식과 분화 및 in vivo에서 쥐의 칼슘대사에 미치는 영향 (1, 25(OH)$_2$-23ene-$D_3$ : Effects on Proliferation and Differentiation of U937 Cells in vitro and on Clcium Metabolism of Rat in vivo)

  • 정수자;서명자
    • 한국식품영양과학회지
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 1995
  • 1, 25(OH)2-23ene-D3 is a novel vitamine D3 analog which has a double bond between C-23 and C-24. We describe the effects of this analog on cell differentiation and cell proliferation in vitro using the human histiocytic lymphoma cell line U937, and on calcium metabolism in rats in vivo. In the present investigation 1, 25(OH)2-23ene-D3 was compared to the natural metabolite of vitamin D3, 1$\alpha$, 25-dihydroxycholecalciferol[1, 25(OH)2-23ene-D3 was more potent than 1, 25(OH)2-23ene-D3 for inhibition of proliferation and induction of differentiation of U937 cells. Especially, its effect on induction of differentiation, as measured by superoxide production and nonspecific esterase(NSE) activity, was about 20-fold more potent that 1, 25(OH)2-23ene-D3. This analog morphologically and functionally differentiated U937 cells to monocyte-macrophage phenotype showing a decrease of N/C ratio in Giemsa staining and the increase of adherence ability to surface. Intraperitoneal administration of 1, 25(OH)2-23ene-D3 to rats showed that the compound had at least 50 times less activity than 1, 25(OH)2-23ene-D3 in causing hypercalcemia and hypercalciuria. The strong direct effects of 1, 25(OH)2-23ene-D3 on cell proliferation and cell differentiation, coupled with its decreased activity of calcium metabolism make this compound an interesting candidate for clinical studies including patients with leukemia, as well as several skin disorders, such as psoriasis.

  • PDF

The Physical, Mechanical, and Sound Absorption Properties of Sandwich Particleboard (SPb)

  • ISWANTO, Apri Heri;HAKIM, Arif Rahman;AZHAR, Irawati;WIRJOSENTONO, Basuki;PRABUNINGRUM, Dita Sari
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권1호
    • /
    • pp.32-40
    • /
    • 2020
  • While the utilization of wood as a raw material in related industries has been increasing with the population increasing, the availability of wood from natural forests has continued to decline. An alternative to this situation is the manufacture of particleboard from non-wood lignocellulose materials through the modification of sandwich particleboard (SPb) using bamboo strands as reinforcement. In this study, strandsof belangke bamboo (Gigantochloa pruriens W) and tali bamboo (Gigantochloa apus) were utilized. The non-wood particles included sugar palm fibers, cornstalk, and sugarcane bagasse. The board was made in a three-layer composition of the face, back, and core in a ratio of 1: 2: 1. The binder used was 8% isocyanate resin. The sheet was pressed at a temperature of 160℃ for 5 min under a pressure of 3.0 N/㎟. Testing included physical and mechanical properties based on the JIS A 5908 (2003) standard, while acoustic testing was based on ISO 11654 (1997) standards. The results showed that using bamboo strands as reinforcement has an effect on the mechanical and physical properties of SPb. Almost all the types of boards met the JIS A 5908 (2003) standards, with the exception of thickness swelling (TS) and internal bond (IB) parameters. Based on the thickness swelling parameter, the C-type board exhibited the best properties. Overall, the B-type board thatused a belangke bamboo strand for the surface and sugarcane bagasse as the core underwent the best treatment. Based on the acoustical parameter, boards using a tali bamboo strand for the surface and sugar palm fiber as the core (E-type board) exhibited good sound absorption properties.

알루미늄 합금과 아연도금강판의 이종 겹치기 마찰교반접합에서 기계적성질에 미치는 Tool Geometry의 영향 (The Effect of Tool Geometry on the Mechanical Properties in a Friction Stir Welded Lap Joint between an Al Alloy and Zn-coated Steel)

  • 김남규;김병철;정병훈;송상우;;강정윤
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.533-542
    • /
    • 2010
  • The specific motivation for joining an Al alloy and Zn-coated steel arises from the need to save fuel consumption by weight reduction and to enhance the durability of vehicle structures in the automobile industry. In this study, the lap joining A6K31 Al alloy (top) and SGARC340 Zn-coated steel (bottom) sheets with a thickness of 1.0 mm and 0.8 mm, respectively, was carried out using the friction stir weld (FSW) technique. The probe of a tool did not contact the surface of the lower Zn-coated steel sheet. The friction stir welding was carried out at rotation speeds of 1500 rpm and travel speeds of 80~200 mm/min. The effects of tool geometry and welding speed on the mechanical properties and the structure of a joint were investigated. The tensile properties for the joints welded with a larger tool were better than those for the joints done with a smaller tool. A good correlation between the tensile load and area of the welded region were observed. The bond strength using a larger tool (M4 and M3) decreased with an increase in welding speed. Most fractures occurred along the interface between the Zn-coated steel and the Al alloy. However, in certain conditions with a lower welding speed, fractures occurred at the A6K31 Al alloy.

Al-Si 도금된 보론강과 Zn 도금된 DP강 TWB 레이저 용접부내의 Al-편석부 미세조직에 미치는 핫스탬핑 열처리의 영향 (Effect of Hot-stamping Heat Treatment on the Microstructure of Al-Segregated Zone in TWB Laser Joints of Al-Si-coated Boron Steel and Zn-coated DP Steel)

  • 정병훈;공종판;강정윤
    • 대한금속재료학회지
    • /
    • 제50권6호
    • /
    • pp.455-462
    • /
    • 2012
  • Al-Si coated boron steel and Zn coated DP steel plates were laser-welded to manufacture a Tailor Welded Blank (TWB) for a car body frame. Hot-stamping heat treatment ($900^{\circ}C$, 5 min) was applied to the TWB weld, and the microstructural change and transformation mechanism were investigated in the Al-rich area near the bond line of the Al-Si coated steel side. There was Al-rich area with a single phase, $Fe_3(Al,Si)$, which was transformed to ${\alpha}-Fe$ (Ferrite) after the heat treatment. It could be explained that the $Fe_3(Al,Si)$ phase was transformed to ${\alpha}-Fe$ during heat treatment at $900^{\circ}C$ for 5 min and the resultant ${\alpha}-Fe$ phase was not transformed by rapid cooling. Before the heat treatment, the microstructures around the $Fe_3(Al,Si)$ phase consisted of martensite, bainite and ${\alpha}-Fe$ while they were transformed to martensite and ${\delta}-Fe$ after the heat treatment. Due to the heat treatment, Al was diffused to the $Fe_3(Al,Si)$ and this resulted in an increase of Al content to 0.7 wt% around the Al-rich area. If the weld was held at $900^{\circ}C$ for 5 min it was transformed to a mixture of austenite (${\gamma}$) and ${\delta}-Fe$, and only ${\gamma}$ was transformed to the martensite by water cooling while the ${\delta}-Fe$ was remained unchanged.

Intramolecular Disulfide Bonds for Biogenesis of Calcium Homeostasis Modulator 1 Ion Channel Are Dispensable for Voltage-Dependent Activation

  • Kwon, Jae Won;Jeon, Young Keul;Kim, Jinsung;Kim, Sang Jeong;Kim, Sung Joon
    • Molecules and Cells
    • /
    • 제44권10호
    • /
    • pp.758-769
    • /
    • 2021
  • Calcium homeostasis modulator 1 (CALHM1) is a membrane protein with four transmembrane helices that form an octameric ion channel with voltage-dependent activation. There are four conserved cysteine (Cys) residues in the extracellular domain that form two intramolecular disulfide bonds. We investigated the roles of C42-C127 and C44-C161 in human CALHM1 channel biogenesis and the ionic current (ICALHM1). Replacing Cys with Ser or Ala abolished the membrane trafficking as well as ICALHM1. Immunoblotting analysis revealed dithiothreitol-sensitive multimeric CALHM1, which was markedly reduced in C44S and C161S, but preserved in C42S and C127S. The mixed expression of C42S and wild-type did not show a dominant-negative effect. While the heteromeric assembly of CALHM1 and CALHM3 formed active ion channels, the co-expression of C42S and CALHM3 did not produce functional channels. Despite the critical structural role of the extracellular cysteine residues, a treatment with the membrane-impermeable reducing agent tris(2-carboxyethyl) phosphine (TCEP, 2 mM) did not affect ICALHM1 for up to 30 min. Interestingly, incubation with TCEP (2 mM) for 2-6 h reduced both ICALHM1 and the surface expression of CALHM1 in a time-dependent manner. We propose that the intramolecular disulfide bonds are essential for folding, oligomerization, trafficking and maintenance of CALHM1 in the plasma membrane, but dispensable for the voltage-dependent activation once expressed on the plasma membrane.

노화에 따른 아스팔트 콘크리트 포장의 수분민감성 평가 (An Evaluation of Moisture Sensitivity of Asphalt Concrete Pavement Due to Aging)

  • 김경남;김유석;김낙석
    • 대한토목학회논문집
    • /
    • 제39권4호
    • /
    • pp.523-530
    • /
    • 2019
  • 포트홀 발생 및 관련 교통사고 건수는 매년 꾸준히 증가하는 추세이며 이에 따른 인명피해, 차량파손에 따른 비용손실 등 도로 이용자의 직 간접적인 피해를 증가시키고 있다. 일반적으로 아스팔트 혼합물은 생산과정부터 시공 후 공용에 따라 지속적으로 노화가 진행된다. 포장 노화는 균열과 수분침투로 박리를 야기하고 반복적인 윤하중에 의해 포장구조를 약화시켜 포트홀을 유발하게 된다. 본 연구에서는 노화가 아스팔트 콘크리트 포장에 미치는 영향을 검토하기 위해 노화정도에 따른 부착성능 평가와 수분민감성 평가를 수행하였다. 연구결과 노화에 따라 아스팔트 바인더의 점성이 증가해 부착강도가 2~3배 이상 증가하였다. 또한 가속 노화시킨 아스팔트 혼합물의 경우 간접인장강도의 증가뿐만 아니라 TSR 값도 4.2~8.9 % 증가하는 것으로 나타났다. 이에 따라 골재에 아스팔트 바인더가 피복된 상태에서 노화가 진행될 경우 아스팔트 바인더와 골재의 부착력이 증가하여 박리 저항성이 향상되는 것으로 분석되었다.

전자기 용접의 충돌 속도에 대한 코일 형상의 영향 (Effect of a Coil Shape on an Impulse Velocity of the Electromagnetic Welding)

  • 박현일;이광석;이진우;이영선;김대용
    • 소성∙가공
    • /
    • 제28권3호
    • /
    • pp.135-144
    • /
    • 2019
  • Electromagnetic impulse welding (EMIW) is a type of solid state welding using the Lorentz force generated by interaction between the magnetic field of the coil and the current induced in the workpiece. Although many experimental studies have been investigated on the expansion and compression welding of tube using the EMIW process, studies on the EMIW process of lap joint between flat sheets are uncommon. Since the magnetic field enveloped inside the tube can be controlled with ease, the electromagnetic technique has been widely used for tube welding. Conversely, it is difficult to control the magnetic field in the flat sheet welding so as to obtain the required welding velocity. The current study analyzed the effects of coil shape on the impulse velocity for suitable flat one-turn coil for the EMIW of the flat sheets. The finite element (FE) multi-physics simulation involving magnetic and structural field of EMIW were conducted with the commercial software LS-DYNA to evaluate the several shape variables, viz., influence of various widths, thicknesses, gaps and standoff distances of the flat one-turn coil on the impulse velocity. To obtain maximum impulse velocity, the flat one-turn coil was designed based on the FE simulation results. The experiments were performed using an aluminum alloy 1050 sheets of 1.0mm thickness using the designed flat one-turn coil. Through the microscopic interfacial analysis of the welded specimens, the interfacial connectivity was observed to have no defects. In addition, the single lap joint tests were performed to evaluate the welding strength, and a fracture occurred in the base material. As a result, a flat one-turn coil was successfully designed to guarantee welding with bond strength equal to or greater than the base material strength.