Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.06.533

The Effect of Tool Geometry on the Mechanical Properties in a Friction Stir Welded Lap Joint between an Al Alloy and Zn-coated Steel  

Kim, Nam-Kyu (Korea Institute of Materials Science)
Kim, Byung-Chul (NCRC for Hybrid Material Solution, Pusan National University)
Jung, Byung-Hoon (R&D Technical Institute, SUNGWOO HITECH)
Song, Sang-Woo (Korea Institute of Materials Science)
Nakata, K. (Joining and Welding Research Institute, Osaka University(JWRI))
Kang, Chung-Yun (NCRC for Hybrid Material Solution, Pusan National University)
Publication Information
Korean Journal of Metals and Materials / v.48, no.6, 2010 , pp. 533-542 More about this Journal
Abstract
The specific motivation for joining an Al alloy and Zn-coated steel arises from the need to save fuel consumption by weight reduction and to enhance the durability of vehicle structures in the automobile industry. In this study, the lap joining A6K31 Al alloy (top) and SGARC340 Zn-coated steel (bottom) sheets with a thickness of 1.0 mm and 0.8 mm, respectively, was carried out using the friction stir weld (FSW) technique. The probe of a tool did not contact the surface of the lower Zn-coated steel sheet. The friction stir welding was carried out at rotation speeds of 1500 rpm and travel speeds of 80~200 mm/min. The effects of tool geometry and welding speed on the mechanical properties and the structure of a joint were investigated. The tensile properties for the joints welded with a larger tool were better than those for the joints done with a smaller tool. A good correlation between the tensile load and area of the welded region were observed. The bond strength using a larger tool (M4 and M3) decreased with an increase in welding speed. Most fractures occurred along the interface between the Zn-coated steel and the Al alloy. However, in certain conditions with a lower welding speed, fractures occurred at the A6K31 Al alloy.
Keywords
alloy; welding; mechanical properties; focused ion beam (FIB); friction stir welding (FSW);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 K. Tanaka, M. Kumagai, and H. Toshida, J. Jpn. Inst. Light Met. 56, 317 (2006).   DOI   ScienceOn
2 C. K. Chun, H. J. Kim, and W. S. Chang, J. KWS 26, 567 (2008).
3 S. G. Lim, S. S. Kim, C. G. Kim, and S. J. Kim, J. Kor. Inst. Met. & Mater. 41, 743 (2003).
4 N. K Kim, B. C. Kim, Y. G. An, B. H. Jung, S. W. Song, and C. Y. Kang, Met. Mater. Int. 15, 671 (2009).   DOI   ScienceOn
5 W. Takehiko, D. Yuhei, Y. Atsushi, and K. Shizuyo, J. Japan Welding Society 23, 491 (2005).   DOI   ScienceOn
6 N. Koji, F. Hiro, and K. Seiji, J. Japan Welding Society 22, 572 (2004).   DOI   ScienceOn
7 T. Sakurai, Kobe Steel Engineering Reports, 57, 45 (2007).
8 T. Inabe, H. Yamashita, Y. Takebayashi, T. Minoura, and S. Sasabe, Kobe Steel Engineering Reports 55, 66 (2005).
9 Y. Takaki, T. Masuda, and S. Yasunaga, Kobe Steel Engineering Reports 54, 42 (2004).
10 J. Tsujino, K. Hidai, A. Hasegawa, R. Kanai, H. Matsuura, and K. Matsushima, Ultrasonics 40, 371 (2002).   DOI   ScienceOn
11 M. U. Kamachi, R. BM. Ananda, K. Shanmugam, R. Natarajan, and B. Raj, J. Nucl. Mater. 321, 40 (2003).   DOI   ScienceOn
12 K. Matsugi, Y. Wang, T. Hatayama, O. Yanagisawa, and K. Syakagohri, J. Mater. Process Technol. 135, 75 (2003).   DOI   ScienceOn
13 W. B. Lee, Y. M. Yeon, D. U. Kim, and S. B. Jung, Mater Sci. Technol. 19, 773 (2003).   DOI   ScienceOn
14 H. Uzun, C.D. Donne, A. Argagnotto, T. Ghidini, and C. Gambaro, Materials and Design. 26, 41 (2005).   DOI   ScienceOn
15 S. Ramasamy, Welding Journal 2, 35 (2003).
16 S. Sundaresan and K. G. K. Murti, Material Forum 17, 301 (1993).
17 M. Hansen, Constitution of Binary Alloys, p.91, McGraw-Hill Book Company, Inc, New York (1958).
18 K. Richter, G. Bostanjoglo, R. Dommaschk, R. Mayrhofer, D. Weber, and H. Weber, Proc. SPIE 2789, 12 (1996).
19 D. C. Weckman, H. W. Kerr, and J. T. Liu, Metall. Mater. Trans. B 28B, 687 (1997).
20 C. M. Chen and R. Kovacevic, Int. J. Machine Tools & Manufacture 44, 1205 (2004).   DOI   ScienceOn
21 R. Sakano, K. Murakami, K. Yamashita, T. Hyoe, M. Fujimoto, M. Inuzuka, H. Nagao, and H. Kashiki, Proc. 3rd Int. Symposium on Friction Stir Welding, Kobe, Japan (2001).
22 S. Koga, J. Light Metal Welding & Construction 42-1, 523 (2004).
23 R. Sakano and R. Kato, Welding Technology 52-2, 99 (2004).
24 R. S. Mishra and Z. Y. Ma, Mater. Sci. Eng. R 50, 1 (2005).   DOI   ScienceOn
25 W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith, and C. J. Dawes, European Patent EP 0 615 480 B1 (1992).
26 C. Dawes, Welding & Metal Fabrication 63, 13 (1995).
27 M. Katashi, T. Masami, Y. Toshiaki, and F. Masahiro, J. Japan Welding Society 26, 131 (2008).   DOI   ScienceOn
28 R. Uegi, H. Fujii, L. Cui, A. Nishioka, and K. Nogi, Mater. Sci. Eng. A 423, 324 (2006).   DOI   ScienceOn
29 M. M. Attallah and H. G. Salem, Mater. Sci. Eng. A 391, 51 (2005).   DOI   ScienceOn
30 H. Fujii, L. Cui, M. Maeda, and K. Nogi, Mater. Sci. Eng. A 419, 25 (2006).   DOI   ScienceOn
31 B. C. Son, S. Y. Woo J. B. Lee, Y. B. Choi, and H. S. Chang, J. KWS 15, 268 (1997).
32 E. Ahmed, T. Makoto, and I. Kenji, J. Japan Welding Society 23, 185 (2005).
33 Y. C. Chen and K. Nakata, Metall. Mater. Trans. A 39A, 1985 (2008).
34 ISO 14273: Specimen dimensions and procedure for shear testing resistance spot, seam and embossed projection welds (2000).