DOI QR코드

DOI QR Code

The Effect of Tool Geometry on the Mechanical Properties in a Friction Stir Welded Lap Joint between an Al Alloy and Zn-coated Steel

알루미늄 합금과 아연도금강판의 이종 겹치기 마찰교반접합에서 기계적성질에 미치는 Tool Geometry의 영향

  • Kim, Nam-Kyu (Korea Institute of Materials Science) ;
  • Kim, Byung-Chul (NCRC for Hybrid Material Solution, Pusan National University) ;
  • Jung, Byung-Hoon (R&D Technical Institute, SUNGWOO HITECH) ;
  • Song, Sang-Woo (Korea Institute of Materials Science) ;
  • Nakata, K. (Joining and Welding Research Institute, Osaka University(JWRI)) ;
  • Kang, Chung-Yun (NCRC for Hybrid Material Solution, Pusan National University)
  • 김남규 (한국기계연구원 부설 재료연구소) ;
  • 김병철 (하이브리드소재솔루션 국가핵심연구센터) ;
  • 정병훈 (성우하이텍 기술연구소) ;
  • 송상우 (한국기계연구원 부설 재료연구소) ;
  • ;
  • 강정윤 (하이브리드소재솔루션 국가핵심연구센터)
  • Received : 2009.10.26
  • Published : 2010.06.22

Abstract

The specific motivation for joining an Al alloy and Zn-coated steel arises from the need to save fuel consumption by weight reduction and to enhance the durability of vehicle structures in the automobile industry. In this study, the lap joining A6K31 Al alloy (top) and SGARC340 Zn-coated steel (bottom) sheets with a thickness of 1.0 mm and 0.8 mm, respectively, was carried out using the friction stir weld (FSW) technique. The probe of a tool did not contact the surface of the lower Zn-coated steel sheet. The friction stir welding was carried out at rotation speeds of 1500 rpm and travel speeds of 80~200 mm/min. The effects of tool geometry and welding speed on the mechanical properties and the structure of a joint were investigated. The tensile properties for the joints welded with a larger tool were better than those for the joints done with a smaller tool. A good correlation between the tensile load and area of the welded region were observed. The bond strength using a larger tool (M4 and M3) decreased with an increase in welding speed. Most fractures occurred along the interface between the Zn-coated steel and the Al alloy. However, in certain conditions with a lower welding speed, fractures occurred at the A6K31 Al alloy.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. K. Tanaka, M. Kumagai, and H. Toshida, J. Jpn. Inst. Light Met. 56, 317 (2006). https://doi.org/10.2464/jilm.56.317
  2. C. K. Chun, H. J. Kim, and W. S. Chang, J. KWS 26, 567 (2008).
  3. S. G. Lim, S. S. Kim, C. G. Kim, and S. J. Kim, J. Kor. Inst. Met. & Mater. 41, 743 (2003).
  4. N. K Kim, B. C. Kim, Y. G. An, B. H. Jung, S. W. Song, and C. Y. Kang, Met. Mater. Int. 15, 671 (2009). https://doi.org/10.1007/s12540-009-0671-x
  5. W. Takehiko, D. Yuhei, Y. Atsushi, and K. Shizuyo, J. Japan Welding Society 23, 491 (2005). https://doi.org/10.2207/qjjws.23.491
  6. N. Koji, F. Hiro, and K. Seiji, J. Japan Welding Society 22, 572 (2004). https://doi.org/10.2207/qjjws.22.572
  7. T. Sakurai, Kobe Steel Engineering Reports, 57, 45 (2007).
  8. T. Inabe, H. Yamashita, Y. Takebayashi, T. Minoura, and S. Sasabe, Kobe Steel Engineering Reports 55, 66 (2005).
  9. Y. Takaki, T. Masuda, and S. Yasunaga, Kobe Steel Engineering Reports 54, 42 (2004).
  10. J. Tsujino, K. Hidai, A. Hasegawa, R. Kanai, H. Matsuura, and K. Matsushima, Ultrasonics 40, 371 (2002). https://doi.org/10.1016/S0041-624X(02)00124-5
  11. M. U. Kamachi, R. BM. Ananda, K. Shanmugam, R. Natarajan, and B. Raj, J. Nucl. Mater. 321, 40 (2003). https://doi.org/10.1016/S0022-3115(03)00194-6
  12. K. Matsugi, Y. Wang, T. Hatayama, O. Yanagisawa, and K. Syakagohri, J. Mater. Process Technol. 135, 75 (2003). https://doi.org/10.1016/S0924-0136(02)01040-3
  13. W. B. Lee, Y. M. Yeon, D. U. Kim, and S. B. Jung, Mater Sci. Technol. 19, 773 (2003). https://doi.org/10.1179/026708303225001876
  14. H. Uzun, C.D. Donne, A. Argagnotto, T. Ghidini, and C. Gambaro, Materials and Design. 26, 41 (2005). https://doi.org/10.1016/j.matdes.2004.04.002
  15. S. Ramasamy, Welding Journal 2, 35 (2003).
  16. S. Sundaresan and K. G. K. Murti, Material Forum 17, 301 (1993).
  17. M. Hansen, Constitution of Binary Alloys, p.91, McGraw-Hill Book Company, Inc, New York (1958).
  18. K. Richter, G. Bostanjoglo, R. Dommaschk, R. Mayrhofer, D. Weber, and H. Weber, Proc. SPIE 2789, 12 (1996).
  19. D. C. Weckman, H. W. Kerr, and J. T. Liu, Metall. Mater. Trans. B 28B, 687 (1997).
  20. C. M. Chen and R. Kovacevic, Int. J. Machine Tools & Manufacture 44, 1205 (2004). https://doi.org/10.1016/j.ijmachtools.2004.03.011
  21. R. Sakano, K. Murakami, K. Yamashita, T. Hyoe, M. Fujimoto, M. Inuzuka, H. Nagao, and H. Kashiki, Proc. 3rd Int. Symposium on Friction Stir Welding, Kobe, Japan (2001).
  22. S. Koga, J. Light Metal Welding & Construction 42-1, 523 (2004).
  23. R. Sakano and R. Kato, Welding Technology 52-2, 99 (2004).
  24. R. S. Mishra and Z. Y. Ma, Mater. Sci. Eng. R 50, 1 (2005). https://doi.org/10.1016/j.mser.2005.07.001
  25. W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith, and C. J. Dawes, European Patent EP 0 615 480 B1 (1992).
  26. C. Dawes, Welding & Metal Fabrication 63, 13 (1995).
  27. M. Katashi, T. Masami, Y. Toshiaki, and F. Masahiro, J. Japan Welding Society 26, 131 (2008). https://doi.org/10.2207/qjjws.26.131
  28. R. Uegi, H. Fujii, L. Cui, A. Nishioka, and K. Nogi, Mater. Sci. Eng. A 423, 324 (2006). https://doi.org/10.1016/j.msea.2006.02.038
  29. M. M. Attallah and H. G. Salem, Mater. Sci. Eng. A 391, 51 (2005). https://doi.org/10.1016/j.msea.2004.08.059
  30. H. Fujii, L. Cui, M. Maeda, and K. Nogi, Mater. Sci. Eng. A 419, 25 (2006). https://doi.org/10.1016/j.msea.2005.11.045
  31. E. Ahmed, T. Makoto, and I. Kenji, J. Japan Welding Society 23, 185 (2005).
  32. Y. C. Chen and K. Nakata, Metall. Mater. Trans. A 39A, 1985 (2008).
  33. ISO 14273: Specimen dimensions and procedure for shear testing resistance spot, seam and embossed projection welds (2000).
  34. B. C. Son, S. Y. Woo J. B. Lee, Y. B. Choi, and H. S. Chang, J. KWS 15, 268 (1997).