• Title/Summary/Keyword: bipolar transistors

Search Result 111, Processing Time 0.024 seconds

Micro IGBT Device Modeling and Circuit Simulation (미시적인 IGBT 소자 모델링과 회로동작 시뮬레이션)

  • Seo, Young-Soo;Baek, Dong-Hyun;Lim, Young-Bae;Kim, Young-Chun;Cho, Moon-Taek;Seo, Soo-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.562-564
    • /
    • 1994
  • IGBT devices have the best features of both power MOSFETs and power bipolar transistors, i. e., efficient voltage gate drive requirements and high current density capability. The interaction of the IGBT with the load circuit can be described using the device model and the state equation of the load circuit. The protection circuit requirements are unique for the IGBT and can be examined using the model.

  • PDF

A Novel Solid State Controller for Parallel Operated Isolated Asynchronous Generators in Pico Hydro Systems

  • Singh, Bhim;Kasal, Gaurav Kumar
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.358-365
    • /
    • 2007
  • This paper deals with a novel solid state controller (NSSC) for parallel operated isolated asynchronous generators (IAG) feeding 3-phase 4-wire loads in constant power applications, such as uncontrolled pico hydro turbines. AC capacitor banks are used to meet the reactive power requirement of asynchronous generators. The proposed NSSC is realized using a set of IGBTs (Insulated gate bipolar junction transistors) based current controlled 4-leg voltage source converter (CC-VSC) and a DC chopper at its DC bus, which keeps the generated voltage and frequency constant in spite of changes in consumer loads. The complete system is modeled in MATLAB along with simulink and PSB (power system block set) toolboxes. The simulated results are presented to demonstrate the capability of isolated generating system consisting of NSSC and parallel operated asynchronous generators driven by uncontrolled pico hydro turbines and feeding 3-phase 4-wire loads.

A Study on Short Channel Effects of n Channel Polycrystalline Silicon Thin Film Transistor Fabricated at High Temperature (고온에서 제작된 n채널 다결정 실리콘 박막 트랜지스터의 단채널 효과 연구)

  • Lee, Jin-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.359-363
    • /
    • 2011
  • To integrate the sensor driver and logic circuits, fabricating down scaled transistors has been main issue. At this research, short channel effects were analyzed after n channel polycrystalline silicon thin film transistor was fabricated at high temperature. As a result, on current, on/off current ratio and transconductance were increased but threshold voltage, electron mobility and s-slope were reduced with a decrease of channel length. When carriers that develop at grain boundary in activated polycrystalline silicon have no gate biased, on current was increased with punch through by drain current. Also, due to BJT effect (parallel bipolar effect) that developed under region of channel by increase of gate voltage on current was rapidly increased.

The Optimal Design of Field Ring for Reliability and Realization of 3.3 kV Power Devices (3.3 kV 이상의 전력반도체 소자 구현 및 신뢰성 향상을 위한 필드링 최적 설계에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.148-151
    • /
    • 2017
  • This research concerns field rings for 3.3kV planar gate power insulated-gate bipolar transistors (IGBTs). We design an optimal field ring for a 3.3kV power IGBT and analyze its electrical characteristics according to field ring parameters. Based on this background, we obtained 3.3kV high breakdown voltage and a 2.9V on state voltage drop. To obtain high breakdown voltage, we confirmed that the field ring count was 23, and we obtained optimal parameters. The gap distance between field rings $13{\mu}m$ and the field ring width was $5{\mu}m$. This design technology will be adapted to field stop IGBTs and super junction IGBTs. The thyristor device for a power conversion switch will be replaced with a super high voltage power IGBT.

Array of SNOSFET Unit Cells for the Nonvolatile EEPROM (비휘방성 EEPROM을 위한 SNOSFET 단위 셀의 어레이)

  • 강창수;이형옥;이상배;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.48-51
    • /
    • 1991
  • Short channel Nonvolatile EEPROM memory devices were fabricated to CMOS 1M bit design rule, and reviews the characteristics and applications of SNOSFET. Application of SNOS field effect transistors have been proposed for both logic circuits and nonvolatile memory arrays, and operating characteristics with write and erase were investigated. As a results, memory window size of four terminal devices and two terminal devices was established low conductance stage and high conductance state, which was operated in “1” state and “0”state with write and erase respectively. And the operating characteristics of unit cell in matrix array were investigated with implementing the composition method of four and two terminal nonvolatile memory cells. It was shown that four terminal 2${\times}$2 matrix array was operated bipolar, and two termineal 2${\times}$2 matrix array was operated unipolar.

Solid State MARX Generator Using IGBTs and EMTP simulations (IGBT 스위치를 이용한 전력용 반도체 Marx Generator와 EMTP 시뮬레이션)

  • Sung, Young-Hun;Lee, Keun-Yong;Ko, Kwang-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2207-2208
    • /
    • 2006
  • 기존의 Gap switch를 이용한 Marx generator는 트리거-펄스 발생회로가 따로 필요하여 복잡한 구조를 가질 뿐만 아니라, 스위치의 짧은 수명과 스위치 내부의 스파크전류의 Jitter 현상, 그리고 순차적인 스위치 turn-on과 스위치 내외부의 인덕턴스로 인한 전압 상승시간의 지연 등의 단점을 가지고 있다. 본 논문에서는 이러한 단점들을 해결하기 위해 기존의 Gap switch대신 전력용 반도체 소자인 IGBT(Insulated Gate Bipolar Transistors) 스위치를 이용한 Marx generator를 제안하고, 제안된 회로의 동작을 구현하기 위해 전력계통용 전자기과도현상 해석프로그램인 EMTP(Electromagnetic Transient Program)를 사용하여 시뮬레이션 하여 IGBT스위치가 이상적인 동작을 할 때 얻어지는 이점을 알아보기로 한다.

  • PDF

Solid State MARX Generator Using IGBTs and EMTP simulations (IGBT 스위치를 이용한 전력용 반도체 Marx Generator와 EMTP 시뮬레이션)

  • Sung, Young-Hun;Lee, Keun-Yong;Ko, Kwang-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.575-576
    • /
    • 2006
  • 기존의 Gap switch를 이용한 Marx generator는 트리거-펄스 발생회로가 따로 필요하여 복잡한 구조를 가질 뿐만 아니라, 스위치의 짧은 수명과 스위치 내부의 스파크전류의 Jitter 현상, 그리고 순차전인 스위치 turn-on과 스위치 내외부의 인덕턴스로 인한 전압 상승시간의 지연 등의 단점을 가지고 있다. 본 논문에서는 이러한 단점들을 해결하기 위해 기존의 Gap switch대신 전력용 반도체 소자인 IGBT(Insulated Gate Bipolar Transistors) 스위치를 이용한 Marx generator를 제안하고, 제안된 회로의 동작을 구현하기 위해 전력계통용 전자기과도현상 해석프로그램인 EMTP(Electromagnetic Transient Program)를 사용하여 시뮬레이션 하여 IGBT스위치가 이상적인 동작을 할 때 얻어지는 이점을 알아보기고 한다.

  • PDF

Accurate modeling of small-signal equivalent circuit for heterojunction bipolar transistors (이종접합 바이폴라 트랜지스터에 관한 소신호 등가회로의 정확한 모델링)

  • 이성현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.156-161
    • /
    • 1996
  • Accurate equivalent circuit modeling using multi-circuit optimization has been perfomred for detemining small-signal model of AlGaAs/GaAs HBTs. Three equivalent circuits for a cutoff biasing and two active biasing at different curretns are optimized simultaneously to fit gheir S parameters under the physics-based constrain that current-dependent elements for one of active circuits are connected to those for another circit multiplied by the ratio of two currents. The cutoff mode circuit and the physical constrain give the advantage of extracting physically acceptable parameters, because the number of unknown variables. After this optimization, three ses of optimized model S-parameters agree well with their measured S-parameters from 0.045 GHz to 26.5GHz.

  • PDF

Fabrication of InP/InGaAs HPT's with ITO Emitter Contacts (ITO 에미터 투명전극을 갖는 InP/InGaAs HPT 제작)

  • Kang, Min-Su;Han, Kyo-Yong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.11
    • /
    • pp.546-550
    • /
    • 2002
  • In this paper, Heterojunction phototransistors(HPT's) with an optically transparent ITO emitter contacts were fabricated. The ITO ohmic contacts were realized by employing thin imdium layer between the ITO and $n^+$-InP layers. The ITO contact was annealed at $250^{\circ}C$. The specific contact resistance of about $6.6{\times}10^{-4}{\Omega}cm^2$ was measured by use of the transmission line model (TLM). Heterojunction bipolar transistors (HBTs) having the same device layout were fabricated to compare with HPTs. The DC characteristics of the InP/InGaAs HPT showed the similar electrical characteristics of the HBT. Emitter contact resistance($R_E$) of about $6.4{\Omega}$ was extracted, which was very similar to that of the HBT. The optical characteristics of HPT's were generated by illuminating the device with light from $1.3{\mu}m$ light. It showed that HPT's can be controlled optically.

Sinusoidal Input Power factor Improved for Single-Phase Buck AC-DC Type Converter (정현파 입력 역률개선을 위한 단상 강압형 AC-DC 컨버터)

  • Jung, S.H.;Kwon, K.S.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.338-340
    • /
    • 2001
  • Power factor improved for single-phase buck-converter is studied in the paper. To sinusoidal waveform the input current with a near-unity power factor over a wide variety of operating conditions, the output capacitor is operated with voltage reversibility for the supply by arranging the auxiliary diode and power switching device. Then the output voltage is superposed on the input voltage during on time duration of power switching devices in order to minimize the input current distortion caused by the small input voltage when changing the polarity. The tested setup, using two insulated gate bipolar transistors(IGBT) and a microcomputer, is implemented and IGBT are switched with 20[kHz], which is out of the audible band. Moreover, a rigorous state-space analysis is introduced to predict the operation of the rectifier. The simulated results confirm that the input current can be sinusoidal waveform with a near-unity power factor and a satisfactory output voltage regulation can be achieved.

  • PDF