• Title/Summary/Keyword: biopesticide

Search Result 72, Processing Time 0.036 seconds

Biological control of crown gall disease on rose by Agrobacterium radiobacter K84 (Agrobacterium radiobacter K84에 의한 장미 뿌리혹병의 생물적 방제)

  • Park, Kwang-Hoon;Cha, Jae-Soon
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.3
    • /
    • pp.50-53
    • /
    • 2001
  • Severe crown gall disease was occurred in green house cultivating rose in Jinchen, Chungbuk recently. Although it causes problem on rose cultivation, the growers do not have many choices of control measures for the disease now. Agrobacterium radiobacter K84 has been known as a strong antagonist against A. tumefaciens, a pathogen causing crown gall disease, and used as a biopesticide for crown gall in many countries since it had been introduced in 1972. We tested control activity of A. radiobacter K84 for the crown gall disease on rose. Spray of A. radiobacter K84 suspension on above ground of rose either before or after pathogen spray reduced size and fresh weight of galls significantly. Size and fresh weight of galls on roses inoculated with pathogen either before A. radiobacter K84 spray (pathogen-K84 treatment) or after A. radiobacter K84 spray(K84-pathogen treatment) were 4 to 5% of those of galls on roses inoculated pathogen only. Disease incidence of plants inoculated pathogen only was 85% whereas disease incidence of pathogen-K84 or K84-pathogen treatments were 6.7% and 5.0% respectively. Dipping of roots of rose in suspension of A. radiobacter K84 was also reduced size of galls and diseased rate significantly. These results indicate that A. radiobacter K84 is effective in the prevention of gall formation by A. tumefaciens and it can be used to control of crown gall disease of rose.

  • PDF

An Analysis of Consumer's Taste on Environment-Friendly Agricultural Products in Korea (우리나라 친환경 농산물에 대한 소비자 의향분석)

  • 이종성;오주성;손흥대;양원진;정원복;정순재;김도훈
    • Journal of Life Science
    • /
    • v.12 no.4
    • /
    • pp.433-441
    • /
    • 2002
  • There has been an increasing public concern about environmental safety and human health of field crops while customer consumes more and more field crops, to which overdose and residual chemicals were applied. As a solution for the problems, construction of sustainable agroecosystem is spreading out to pursuit the economic value of agricultural management as well as to meet environment concern. Public has extended their understanding on the preservation of environment and safeness of agricultural products, and governmental policy toward sustainable agriculture drives rapid increase of the production of sustainable agricultural products. Under this circumstances, it is time to encourage more consumption and to activate market system for the sustainable agricultural products. This study was initiated to diagnose the problems and future direction of domestic sustainable agriculture by analyzing the overall opinions of consumer on the sustainable agriculture. The results are as follows: The pursuit of low input management is a prerequisite to creat high valued agricultural products, and serious consideration should be taken to produce clean crops using natural products. Consummers are willing to pay 10∼50% more prices if the products get certified by official eco-label programs. It is believed that practice of sustainable agriculture using biopesticide and natural pesticide would accelerate the rapid extension of this pro-environmental agricultural management. To activate production and consumption of sustainable agricultural products correct informations on safety should be addressed to customer, and confidence has to be brought about from customer. This could be done by obtaining various and efficient distribution route, product competency for quality, upgraded sales strategy, maximum utilization of certificate system, and practice of recall system, so on.

Enhanced Pathogenicity of Bacillus thuringiensis Mixed with a Culture Broth of an Entomopathogenic Bacterium, Xenorhabdus sp. (제노랍두스 곤충병원세균 배양액의 비티 미생물 약제 약효증진 효과)

  • Seo, Sam-Yeol;Ahn, Haet-Nim;Eom, Seong-Hyeon;Im, Eun-Yeong;Park, Ji-Young;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.51 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • The entomopathogenic bacterium, $Xenorhabdus$ sp., was isolated from an entomopathogenic nematode, $Steinernema$ $monticolum$. When these bacteria were injected into the hemocoel of the diamondback moth, $Plutella$ $xylostella$, they caused significant mortality. However, the bacterium was not pathogenic when it was administered orally. This study showed that $Xenorhabdus$ sp. significantly enhanced oral pathogenicity of $Bacillus$ $thuringiensis$ (Bt) against the last instar larvae of $P.$ $xylostella$. Different ratios of culture broth of $Xenorhabdus$ sp. and Bt showed significantly different pathogenicities against $P.$ $xylostella$. In field tests, the optimal bacterial mixture significantly enhanced control efficacy against $P.$ $xylostella$ compared to Bt treatment alone. These results demonstrated that $Xenorhabdus$ sp. culture broth can be developed as a potent biopesticide by enhancing the insecticidal efficacy of Bt.

Characterization of a δ-endotoxin produced by Bacillus thuringiensis BT-1, BT-2. (Bacillus thuringiensis BT-1, BT-2가 생산하는 δ-endotoxin의 특성 규명)

  • Kim, Young-Min;Choi, Hong-Seo;Chung, Kun-Sub
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.658-663
    • /
    • 2007
  • Bacillus thuringiensis is a well-known species of entomophathogenic bacteria that is widely used as a biopesticide against many insect pests. It produces parasporal crystals ($\delta$-endotoxin) and endospores during sporulation. In this report, the $\delta$-endotoxin produced by Bacillus thuringiensis BT-1 and BT-2 were characterized by Scanning Electron Microscope(SEM), Transmission Electron Microscope(TEM), SDS-PACE, and solubilization activity by alkaline solution. BT-1, BT-2 were cultured in the GBY medium, and the $\delta$-endotoxin of them was purified with discontinuous sucrose density gradient centrifugation. Their $\delta$-endotoxin was observed by SEM and TEM. Morphologically, the $\delta$-endotoxin of BT-1 was a square and flat type, whose size was $1.73{\mu}m{\times}0.7{\mu}m$, and the $\delta$-endotoxin of the BT-2 was spherical form whose size was $1.1{\mu}m{\times}0.9{\mu}m$ determined by SEM and TEM. The $\delta$-endotoxin of the BT-1 was composed of 28 kDa and 21 kDa, however, it of the BT-2 was composed of 50 kDa, 35 kDa, and 22 kDa bands determined by SDS-PACE. The purified crystals of BT-1 and BT-2 were dissolved gradually in alkaline solution as time goes by, and it was perfectly dissolved after 3 hours. It is supposed that the $\delta$-endotoxin of crystal was converted to a state of activation in the course of time in the intestines of insect.

Recent Developments in Agricultural Sprays : Review

  • No, S. Y.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.44-54
    • /
    • 2002
  • A brief review of current status in the field of agricultural spray and future research challenges are presented. Researches on the pesticides sprays, pollen sprays, postharvest sprays, and biological control agent sprays among the various applications of agricultural spray were selected and reviewed. In the agrochemical sprays, the techniques to increase the deposition such as electrospray and reduce the drift such as introductions of drift retardants and of mechanical means are reviewed. The introduction of mechanical means includes low drift, air-assisted, air inclusion, shield or shroud assisted and pulse flow nozzles. For flat fan nozzles, the data of breakup length and thickness of liquid sheet are essential to understand the atomization processes and develop the transport model to target In the air-assisted spray technology to reduce drift, further works on the effect of application height on drift and air assistance on droplet size should be followed. In addition, methods for quantifying the included air in the air inclusion techniques are required. The atomization characteristics of biopesticides spray are not being elucidated and the formulations of biopesticides should be taken into account the spray characteristics of existing nozzle and sprayer. A few researches on the droplet size of fallout can be found in the literature. A combined technology with electrostatic method into one of method for the reduction of drift may be an effective strategy for increasing deposition and reducing drift. Only an integrated approach involving all stakeholders such as engineers, chemists, and biologists, etc. can result in improved application of agricultural spray.

  • PDF

Canna edulis Leaf Extract-Mediated Preparation of Stabilized Silver Nanoparticles: Characterization, Antimicrobial Activity, and Toxicity Studies

  • Otari, S.V.;Pawar, S.H.;Patel, Sanjay K.S.;Singh, Raushan K.;Kim, Sang-Yong;Lee, Jai Hyo;Zhang, Liaoyuan;Lee, Jung-Kul
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.731-738
    • /
    • 2017
  • A novel approach to synthesize silver nanoparticles (AgNPs) using leaf extract of Canna edulis Ker-Gawl. (CELE) under ambient conditions is reported here. The as-prepared AgNPs were analyzed by UV-visible spectroscopy, transmission emission microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, energy-dispersive analysis of X-ray spectroscopy, zeta potential, and dynamic light scattering. The AgNPs showed excellent antimicrobial activity against various pathogens, including bacteria and various fungi. The biocompatibility of the AgNPs was analyzed in the L929 cell line using NRU and MTT assays. Acridine orange/ethidium bromide staining was used to determine whether the AgNPs had necrotic or apoptotic effects on L929 cells. The concentration of AgNPs required for 50% inhibition of growth of mammalian cells is far more than that required for inhibition of pathogenic microorganisms. Thus, CELE is a candidate for the eco-friendly, clean, cost-effective, and nontoxic synthesis of AgNPs.

Status and Future Prospects of Pest Control Agents in Environmentally-friendly Agriculture, and Importance of their Commercialization (친환경농업 해충방제용 제제의 현황과 전망, 그리고 산업화의 중요성)

  • Kim, In-Seon;Kim, Ik-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.3
    • /
    • pp.301-309
    • /
    • 2009
  • The use of bioactive materials derived from microorganisms and plants has played a role in pest management in environmentally-friendly agriculture (EFA) system. In Korea, a number of agricultural agents for the control of insect pests have been registered officially as biopesticides and marketed widely. However, most of the biopesticides has a limitation in the resource availability of bioactive materials, which has been one of main problems related to the commercialization of agricultural agents. Plant materials and microbial metabolites are the best sources as starting components to commercialize natural-occurring agricultural agents for pest management. The lack of modernized system for the standardization and quality control of the starting materials, however, has also received as a main problem related to the commercialization of agricultural agents. Considered that EFA business has kept growing bigger and bigger with global economic status, the commercialization of agricultural agents is necessary to meet the required number of agricultural agents officially available in EFA. This study describes the status and future prospects of pest control agents in EFA. A number of main issues hindered in the commercialization of agricultural agents are discussed in order to present a promising approach to successful commercialization.

Microorganisms Against Plasmodiophora brassicae

  • Choi, Kwang-Hoon;Yi, Yong-Sub;Lee, Sun-Hee;Kang, Kyung-Rae;Lee, Eun-Jung;Hong, Sung-Won;Young, Jung-Mo;Park, Young-Hee;Choi, Gyung-Ja;Kim, Bum-Joon;Lim, Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.873-877
    • /
    • 2007
  • In order to find microorganisms showing antifungal activities against Plasmodiophora brassicae, which causes club root, Korean salt-fermented fishery products were tested. Several fermented broths of microorgansims isolated from Ammodytes personatus fishery products showed high antifungal activities. The identification of microorganisms and their in vivo antifungal activities are reported herein.

Effects of Temperature and Culture Media Composition on Sporulation, Mycelial Growth, and Antifungal Activity of Isaria javanica pf185

  • Lee, Jang Hoon;Lee, Yong Seong;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.27 no.3
    • /
    • pp.99-106
    • /
    • 2021
  • The fungal isolate Isaria javanica pf185 has potential as a mycopesticide because it demonstrates insecticidal activity against the green peach aphid and antifungal activity against Colletotrichum gloeosporioides. For commercialization of this isolate, determination of the optimal and least expensive culture conditions is required; however, these data are not currently available. This study describes the conditions for optimal development of conidia and production of metabolites for the biocontrol of the fungal pathogen. The optimal culture conditions were examined using cultures on solid agar and liquid media. High growth temperature enhanced spore formation but reduced antifungal activity in both solid and liquid media. The highest spore yield was obtained in a medium containing glucose as a carbon source and yeast extract as a nitrogen source. Soybean powder and wheat bran were effective nitrogen sources that promoted spore production and antifungal activity of the isolate. These results revealed the basic, cost-effective growth media for commercial production of a biopesticide with insecticidal and antifungal properties for use in integrated pest management.

Screening of Plant Extracts and Identification of their Insecticidal Metabolites against Myzus persicae (복숭아혹진딧물 방제용 식물추출물 탐색 및 살충성분 구명)

  • Yang, Si young;Lim, Da jung;Kim, Yeo Hee;Kim, In Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.125-134
    • /
    • 2018
  • BACKGROUND: Green peach aphid (Myzus persicae) is an insect pest that significantly affects crop production. A number of pesticides have been used for aphid control, but their concerns on insect resistance and food safety have required alternative methods for pest management. In an effort to find for an alternative approach to aphid control, we screened plants extracts and examined their potentiality as insecticidal bio-resources. METHODS AND RESULTS: Two hundred and ninety eight plant extracts were examined for insecticidal activity against the aphid, and the best candidate among them was chosen for further study. The extracts from Cinnamomum camphora was determined to be the best candidate exhibiting insecticidal activity more than 60% at a level of $1,000{\mu}g/mL$. GC/MS analyses detected camphor, borneol, 4-terpineol, ${\alpha}$-terpineol and caryophyllene oxide as major compositions from the extracts obtained by hydrodistillation. Caryophyllene oxide exhibited the highest insecticidal activity with a $LC_{50}$ value of $237{\mu}g/mL$. Camphor lowered significantly the $LC_{50}$ value of caryophyllene oxide and increased largely its concentration in aphid, suggesting that camphor played a role in enhancing the insecticidal activity of caryophyllene oxide. CONCLUSION: This study suggested that camphor and caryophyllene oxide may be used as an insecticidal bio-resource for insect control against green peach aphid.