Browse > Article
http://dx.doi.org/10.4014/jmb.1610.10019

Canna edulis Leaf Extract-Mediated Preparation of Stabilized Silver Nanoparticles: Characterization, Antimicrobial Activity, and Toxicity Studies  

Otari, S.V. (Department of Chemical Engineering, Konkuk University)
Pawar, S.H. (Center for Interdisciplinary Research, D. Y. Patil University)
Patel, Sanjay K.S. (Department of Chemical Engineering, Konkuk University)
Singh, Raushan K. (Department of Chemical Engineering, Konkuk University)
Kim, Sang-Yong (Department of Food Science and Biotechnology, Shin-Ansan University)
Lee, Jai Hyo (Department of Mechanical Engineering, Konkuk University)
Zhang, Liaoyuan (Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University)
Lee, Jung-Kul (Department of Chemical Engineering, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.4, 2017 , pp. 731-738 More about this Journal
Abstract
A novel approach to synthesize silver nanoparticles (AgNPs) using leaf extract of Canna edulis Ker-Gawl. (CELE) under ambient conditions is reported here. The as-prepared AgNPs were analyzed by UV-visible spectroscopy, transmission emission microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, energy-dispersive analysis of X-ray spectroscopy, zeta potential, and dynamic light scattering. The AgNPs showed excellent antimicrobial activity against various pathogens, including bacteria and various fungi. The biocompatibility of the AgNPs was analyzed in the L929 cell line using NRU and MTT assays. Acridine orange/ethidium bromide staining was used to determine whether the AgNPs had necrotic or apoptotic effects on L929 cells. The concentration of AgNPs required for 50% inhibition of growth of mammalian cells is far more than that required for inhibition of pathogenic microorganisms. Thus, CELE is a candidate for the eco-friendly, clean, cost-effective, and nontoxic synthesis of AgNPs.
Keywords
Green chemistry; Canna edulis Ker-Gawl.; nanobiotechnology; antimicrobial; biocompatible;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Kim TS, Patel SKS, Selvaraj C, Jung WS, Pan CH, Kang YC, Lee J-K. 2016. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization. Sci. Rep. 6: 33438.   DOI
2 Patel SKS, Jeong J-H, Mehariya S, Otari SV, Madan B, Haw JR, et al. 2016. Production of methanol from methane by encapsulated Methylosinus sporium. J. Microbiol. Biotechnol. 26: 2098-2105.   DOI
3 Patel SKS, Choi SH, Kang YC, Lee JK. 2016. Large-scale aerosol-assisted synthesis of biofriendly $Fe_2O_3$ yolkshell particles: a promising support for enzyme immobilization. Nanoscale 8: 6728-6738.   DOI
4 Patel SKS, Mardina P, Kim S-Y, Lee J-K, Kim I-W. 2016. Biological methanol production by a type II methanotroph Methylocystis bryophila. J. Microbiol. Biotechnol. 26: 717-724.   DOI
5 Patel SKS, Mardina P, Kim D, Kim S-Y, Kalia VC, Kim I-W, Lee J-K. 2016. Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas. Bioresour. Technol. 218: 202-208.   DOI
6 Vorobyova SA, Lesnikovich AI, Sobal NS. 1999. Preparation of silver nanoparticles by interphase reduction. Colloids Surf. A Physicochem. Eng. Asp. 152: 375-379.   DOI
7 Dahl JA, Maddux BLS, Hutchison JE. 2007. Toward greener nanosynthesis. Chem. Rev. 107: 2228-2269.   DOI
8 Dimitrijevic NM, Bartels DM, Jonah CD, Takahashi K, Rajh T. 2001. Radiolytically induced formation and optical absorption spectra of colloidal silver nanoparticles in supercritical ethane. J. Phys. Chem. B 105: 954-959.   DOI
9 Petit C, Lixon P, Pileni MP. 1993. In-situ synthesis of silver nanocluster in AOT reverse micelles. J. Phys. Chem. 97: 12974-12983.   DOI
10 Jha AK, Prasad K. 2010. Green synthesis of silver nanoparticles using Cycas Leaf. Int. J. Green Nanotechnol. Phys. Chem. 1: 110-117.   DOI
11 Keki S, Török J, Deak G, Daroczi L, Zsuga M. 2000. Silver nanoparticles by PAMAM-assisted photochemical reduction of Ag(+). J. Colloid Interface Sci. 229: 550-553.   DOI
12 Otari SV, Patil RM, Nadaf NH, Ghosh SJ, Pawar SH. 2014. Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. Environ. Sci. Pollut. Res. 21: 1503-1513.   DOI
13 Ramachandran P, Jagtap SS, Patel SKS, Li J, Kang YC, Lee J-K. 2016. Role of the non-conserved amino acid asparagine 285 in the glycone-binding pocket of Neosartorya fischeri $\beta$-glucosidase. RSC Adv. 6: 48137-48144.   DOI
14 Shetty PR, Kumar BS, Kumar YS, Shankar GG. 2012. Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J. Microbiol. Biotechnol. 22: 614-621.   DOI
15 Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandale AB, Rao M, Sastry M. 2001. Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17: 1674-1679.   DOI
16 Sastry M, Mayya KS, Bandyopadhyay K. 1997. pH Dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloids Surf. A Physicochem. Eng. Asp. 127: 221-228.   DOI
17 Malvern Instruments. 2011. Zeta potential: an introduction in 30 minutes. Zetasizer Nano Series Tech. Note MRK654-01. 2: 1-6.
18 Dhanasekar NN, Rahul GR, Narayanan KB, Raman G, Sakthivel N. 2015. Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J. Microbiol. Biotechnol. 25: 1129-1135.   DOI
19 Lee J-K, Kim I-W, Kim T-S, Choi J-H, Kim J-H, Park S-H. 2014. Immunological activities of cationic methylan derivatives. J. Kor. Soc. Appl. Biol. Chem. 57: 319-321.   DOI
20 Kvítek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, et al. 2008. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles. J. Phys. Chem. C 112: 5825-5834.   DOI
21 Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L. 2007. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem. 9: 852-858.   DOI
22 Sandmann G, Dietz H, Plieth W. 2000. Preparation of silver nanoparticles on ITO surfaces by a double-pulse method. J. Electroanal. Chem. 491: 78-86.   DOI
23 Patel SKS, Kalia VC, Choi JH, Haw JR, Kim IW, Lee JK. 2014. Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability. J. Microbiol. Biotechnol. 24: 639-647.   DOI
24 Smetana AB, Klabunde KJ, Sorensen CM. 2005. Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. J. Colloid Interface Sci. 284: 521-526.   DOI
25 Bar H, Bhui DK, Sahoo GP, Sarkar P, Sankar PD, Misra A. 2009. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf. A Physicochem. Eng. Asp. 339: 134-139.   DOI
26 Mardina P, Li J, Patel SKS, Kim I-W, Lee J-K, Selvaraj C. 2016. Potential of immobilized whole-cell Methylocella tundrae as a biocatalyst for methanol production from methane. J. Microbiol. Biotechnol. 26: 1234-1241.   DOI
27 Magudapathy P, Gangopadhyay P, Panigrahi BK, Nair KGM, Dhara S. 2001. Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica B Condens. Matter 299: 142-146.   DOI
28 Otari SV, Patel SKS, Jeong JH, LeeJH, Lee JK. 2016. A green chemistry approach for synthesizing thermostable antimicrobial peptide-coated gold nanoparticles immobilized in an alginate biohydrogel. RSC Adv. 6: 86808-86816.   DOI
29 Jena J, Pradhan N, Nayak RR, Dash BP, Sukla LB, Panda PK, Mishra BK. 2014. Microalga Scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis. J. Microbiol. Biotechnol. 24: 522-533.   DOI
30 Pal S, Tak YK, Song JM. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73: 1712-1720.   DOI
31 Renvoize C, Biola A, Pallardy M, Bre J. 1998. Apoptosis: identification of dying cells. Cell Biol. Toxicol. 14: 111-120.   DOI
32 Woradulayapinij W, Soonthornchareonnon N, Wiwat C. 2005. In vitro HIV type 1 reverse transcriptase inhibitory activities of Thai medicinal plants and Canna indica L. rhizomes. J. Ethnopharmacol. 101: 84-89.   DOI
33 Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346-2353.   DOI
34 Zhao Z, Ramachandran P, Choi JH, Lee J-K, Kim I-W. 2013. Purification and characterization of a novel $\beta$-1,3/1,4-glucanase from Sistotrema brinkmannii HQ717718. J. Kor. Soc. Appl. Biol. Chem. 56: 263-270.   DOI
35 Kumar V, Yadav SK. 2008. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol. 84: 151-157.
36 Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO. 2002. Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 1: 169-172.   DOI
37 Zhang J, Wang ZW, Mi Q. 2011. Phenolic compounds from Canna edulis Ker residue and their antioxidant activity. LWT Food Sci. Technol. 44: 2091-2096.   DOI
38 Cui L, Ouyang Y, Lou Q, Lou Q, Yang F, Chen Y, Zhu W, Luo S. 2010. Removal of nutrients from wastewater with Canna indica L. under different vertical-flow constructed wetland conditions. Ecol. Eng. 36: 1083-1088.   DOI
39 Otari SV, Patil RM, Nadaf NH, Ghosh SJ, Pawar SH. 2012. Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. Mater. Lett. 72: 92-94.   DOI
40 Otari SV, Yadav HM, Thorat HM, Patil RM, Lee JK, Pawar SH. 2016. Facile one pot synthesis of core shell $Ag@SiO_2$ nanoparticles for catalytic and antimicrobial activity. Mater. Lett. 167: 179-182.   DOI
41 Patel SKS, Selvaraj C, Mardina P, Jeong J-H, Kalia VC, Kang Y-C, Lee J-K. 2016. Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization. Appl. Energy 171: 383-391.   DOI