• 제목/요약/키워드: biocatalyst

검색결과 149건 처리시간 0.027초

Transaminases for Green Chemistry: Recent Progress and Future Prospects

  • Shreya Pandya;Akshaya Gupte
    • 한국미생물·생명공학회지
    • /
    • 제51권4호
    • /
    • pp.333-352
    • /
    • 2023
  • Transaminase represents the most important biocatalysts used for the synthesis of chiral amines due to their stereoselectivity. They allow asymmetric synthesis with high yields and enantioselectivity from their corresponding ketones. Due to their environmentally friendly access for the preparation of chiral amines, they have attracted growing attention in recent times. Thus, the production of chiral compounds by transaminase catalysed reactions is considered as an important application in synthetic organic chemistry. Therefore, transaminase is considered to be an important enzyme in the pharmaceutical and chemical industries. ω-Transaminase holds great potential because of its wide substrate specificity thus making it a suitable enzyme to be used at an industrial scale. This review highlights the reaction mechanism, classification, substrate specificity, and biochemical properties. The review also showcases the application of ω-transaminase in organic chemistry with a focus on the production of active pharmaceutical ingredients (APIs).

Enhanced Enzyme Activities of Inclusion Bodies of Recombinant ${\beta}$-Galactosidase via the Addition of Inducer Analog after L-Arabinose Induction in the araBAD Promoter System of Escherichia coli

  • Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.434-442
    • /
    • 2008
  • We observed that an inclusion body (IB) of recombinant ${\beta}$-galactosidase that was produced by the araBAD promoter system in Escherichia coli (E. coil) showed enzyme activity. In order to improve its activity, the lowering of the transcription rate of the ${\beta}$-galactosidase structural gene was attempted through competition between an inducer (L-arabinose) and an inducer analog (D-fucose). In the deep-well microtiter plate culture and lab-scale fermentor culture, it was demonstrated that the addition of D-fucose caused an improvement in specific ${\beta}$-galactosidase production, although ${\beta}$-galactosidase was produced as an IB. In particular, the addition of D-fucose after induction led to an increase in the specific activity of ${\beta}$-galactosidase IB. Finally, we confirmed that the addition of D-fucose after induction caused changes in the structure of ${\beta}$-galactosidase IB, with higher enzyme activity. Based on these results, we expect that an improved enzyme IB will be used as a biocatalyst of the enzyme bioprocess, because an enzyme IB can be purified easily and has physical durability.

Yeast cell surface display of cellobiohydrolase I

  • Lee, Sun-Kyoung;Suh, Chang-Woo;Hwang, Sun-Duk;Kang, Whan-Koo;Lee, Eun-Kyu
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XIII)
    • /
    • pp.468-472
    • /
    • 2003
  • Recently, genetic engineering techniques have been used to display various heterologous peptides and proteins (enzyme, antibody, antigen, receptor and fluorescence protein, etc.) on the yeast cell surface. Living cells displaying various enzymes on their surface could be used repeatedly as 'whole cell biocatalysts' like immobilized enzymes. We constructed a yeast based whole cell biocatalyst displaying T. reesei cellobiohydrolase I (CBH I ) on the cell surface and endowed the yeast-cells with the ability to degrade cellulose. By using a cell surface engineering system based on ${\alpha}-agglutinin,$ CBH I was displayed on the cell surface as a fusion protein containing the N-terminal leader peptide encoding a Gly-Ser linker and the $Xpress^{TM}$ epitope. Localization of the fusion protein on the cell surface was confirmed by confocal microscopy. In this study, we report on the genetic immobilization of T. reesei CBH I on the S. cerevisiae and hydrolytic activity of cell surface displayed CBH I.

  • PDF

광학활성 Phenyl Oxirane 제조용 유전자 재조합 생촉매 개발 (Development of Recombinant Saccharomyces cerevisiae Expressing Epoxide Hydrolase for the Preparation of Chiral Phenyl Oxirane)

  • 이수정;이은정;김초희;이지원;김희숙;이은열
    • 생명과학회지
    • /
    • 제13권1호
    • /
    • pp.105-109
    • /
    • 2003
  • Aspergillus niger #33로부터 RT-PCR 및 PCR방법을 이용하여 epoxide hydrolase (EH)유전자를 클로닝 하고 염기서 열을 분석한 결과 A. niger LCP521 유래의 EB와 85%수준의 유사성을 가지고 있었다. 클로닝된 EH 유전자를 Sacrharomyces cerevisiae에 형질전환 시킨 후 galactose를 inducer로 사용하여 발현시켰다. 유전자 재조합 S. cerevisiae는 라세믹 phenyl oxirane 기질에 대하여 입체선택적 가수분해능이 있음을 확인할 수 있었으며, 이러한 유전자 재조합 EH는 광학활성 에폭사이드 제조를 위한 생촉매로 응용될 수 있을 것이다.

Effects of Feed Moisture Content on Enzymatic Hydrolysis of Corn Starch in Twin-Screw Extruder and Saccharification of the Dried Extrudates

  • Solihin, Budiasih W.;Kim, Mi-Hwan;Im, Byung-Soon;Cha, Jae-Yoon;Ryu, Gi-Hyung
    • Food Science and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.381-385
    • /
    • 2007
  • The objective of this experiment was to study the influence of feed moisture content on the degree of enzymatic hydrolysis of com starch in a twin screw extruder and the saccharification yield of the dried extrudate. The feed moisture content was set at 25, 30, and 35% and ${\alpha}$-amylase solution was directly injected into the feed section at a barrel temperature of $95^{\circ}C$ and screw speed of 250 rpm. Amyloglucosidase was used for the saccharification of the dried extrudate at a concentration of 0.055%(w/w). Expansion ratio and swelling factor of extrudates decreased with increasing the feed moisture content. Addition of ${\alpha}$-amylase during extrusion process raised reducing sugar content of extrudates which also increased with the feed moisture content. The saccharification yield of dried extrudate was higher for the extrudate with lower feed moisture content.

Bio-degradation of Phenol in Wastewater by Enzyme-loaded Membrane Reactor: Numerical Approach

  • Barbieri, Giuseppe;Choi, Seung-Hak;Scura, Francesco;Mazzei, Rosalinda;Giorno, Lidietta;Drioli, Enrico;Kim, Jeong-Hoon
    • 멤브레인
    • /
    • 제19권1호
    • /
    • pp.72-82
    • /
    • 2009
  • A mathematical model was written for simulating the removal of phenol from wastewater in enzyme-loaded membrane reactor (EMR). The numerical simulation program was developed so as to predict the degradation of phenol through an EMR. Numerical model proves to be effective in searching for optimal operating conditions and creating an optimal microenvironment for the biocatalyst in order to optimize productivity. In this study, several dimensionless parameters such as Thiele Modulus (${\phi}^2$, dimensionless Michaelis-Menten constant ($\xi$), Peclet number (Pe) were introduced to simplify their effects on system efficiency. In particular, the study of phenol conversion at different feed compositions shows that low phenol concentrations and high Thiele Modulus values lead to higher reactant degradation.

An Efficient Method for the Expression and Reconstitution of Thermostable Mn/Fe Superoxide Dismutase from Aeropyrum pernix K1

  • Lee, Hee-Jin;Kwon, Hye-Won;Koh, Jong-Uk;Lee, Dong-Kuk;Moon, Ja-Young;Kong, Kwang-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권4호
    • /
    • pp.727-731
    • /
    • 2010
  • The gene APE0743 encoding the superoxide dismutase (ApSOD) of a hyperthermophilic archaeon Aeropyrum pernix K1 was cloned and overexpressed as a GST fusion protein at a high level in Escherichia coli. The expressed protein was simply purified by the process of glutathione affinity chromatography and thrombin treatment. The ApSOD was a homodimer of 25 kDa subunits and a cambialistic SOD, which was active with either Fe(II) or Mn(II) as a cofactor. The ApSOD was highly stable against high temperature. This thermostable ApSOD is expected to be applicable as a useful biocatalyst for medicine and bioindustrial processes.

효모를 사용한 친환경 인디고 염색: 알칼리수용액 종류에 따른 환원력 (Eco-friendly Indigo Dyeing using Baker's Yeast: Reducing Power according to Alkaline Solution Type)

  • 손경희;신윤숙
    • 한국염색가공학회지
    • /
    • 제31권4호
    • /
    • pp.249-257
    • /
    • 2019
  • Baker's yeast(Saccharomyces cerevisiae) was used as a biocatalyst for eco-friendly indigo dyeing and the reducing power of yeast according to the alkaline solution type was compared. NaOH solution, lye, and buffer solution were used as alkaline solutions. The reducing power(K/S value, oxidation/reduction potential(ORP), pH) was monitored according to the elapsed time including the initiation of reduction, peak reduction, and the end of reduction. In all alkaline solutions, it was confirmed that yeast can be used reducing agent in indigo reduction dyeing. The pH stability and reducing power of buffer solution was better than that of NaOH alone. Although, pH and ORP stability of the reduction bath in lye were better than that of buffer solution, K/S value in buffer solution was higher compared to lye. The reducing power was different depending on the starting pH of the dye bath, and it was better when starting at pH 10.70 than at pH 11.30. Fastnesses to washing, rubbing, and light were relatively good with above rating 4. There was no significant difference in colorfastness depending on the type of alkaline solutions.

Development of Bioreactor System for L-Tyrosine Synthesis Using Thermostable Tyrosine Phenol-Lyase

  • Kim, Do-Young;Rha, Eugene;Choi, Su-Lim;Song, Jae-Jun;Hong, Seung-Pyo;Sung, Moon-Hee;Lee, Seung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.116-122
    • /
    • 2007
  • An efficient enzyme system for the synthesis of L-tyrosine was developed using a fed-batch reactor with continuous feeding of phenol, pyruvate, and ammonia. A thermo- and chemostable tyrosine phenol-lyase from Symbiobacterium toebii was employed as the biocatalyst in this work. The enzyme was produced using a constitutive expression system in Escherichia coli BL21, and prepared as a soluble extract by rapid clarification, involving treatment with 40% methanol in the presence of excess ammonium chloride. The stability of the enzyme was maintained for at least 18 h under the synthesis conditions, including 75 mM phenol at pH 8.5 and $40^{\circ}C$. The fed-batch system (working volume, 0.51) containing 1.0 kU of the enzyme preparation was continuously fed with two substrate preparations: one containing 2.2 M phenol and 2.4 M sodium pyruvate, and the other containing 0.4 mM pyridoxal-5-phosphate and 4M ammonium chloride (pH 8.5). The system produced 130g/I of L-tyrosine within 30h, mostly as precipitated particles, upon continuous feeding of the substrates for 22 h. The maximum conversion yield of L-tyrosine was 94% on the basis of the supplied phenol.

Employing Laccase-Producing Aspergillus sydowii NYKA 510 as a Cathodic Biocatalyst in Self-Sufficient Lighting Microbial Fuel Cell

  • Abdallah, Yomna K.;Estevez, Alberto T.;Tantawy, Diaa El Deen M.;Ibraheem, Ahmad M.;Khalil, Neveen M.
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권12호
    • /
    • pp.1861-1872
    • /
    • 2019
  • In the present work, we isolated and identified Aspergillus sydowii NYKA 510 as the most potent laccase producer. Its medium constituents were optimized to produce the highest possible amount of laccase, which was after 7 days at 31℃ and pH 5.2. Banana peel and peptone excelled in inducing laccase production at concentrations of 15.1 and 2.60 g/l, respectively. Addition of copper sulfate elevated enzyme yield to 145%. The fungus was employed in a microbial fuel cell (MFC). The best performance was obtained at 2000 Ω achieving 0.76 V, 380 mAm-2, 160 mWm-2, and 0.4 W. A project to design a self-sufficient lighting unit was implemented by employing a system of 2 sets of 4 MFCs each, connected in series, for electricity generation. A scanning electron microscopy image of A. sydowii NYKA 510 was utilized in algorithmic form generation equations for the design. The mixed patterning and patterned customized mass approach were developed by the authors and chosen for application in the design.