Browse > Article

Enhanced Enzyme Activities of Inclusion Bodies of Recombinant ${\beta}$-Galactosidase via the Addition of Inducer Analog after L-Arabinose Induction in the araBAD Promoter System of Escherichia coli  

Jung, Kyung-Hwan (Division of Food and Biotechnology, Chungju National University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.3, 2008 , pp. 434-442 More about this Journal
Abstract
We observed that an inclusion body (IB) of recombinant ${\beta}$-galactosidase that was produced by the araBAD promoter system in Escherichia coli (E. coil) showed enzyme activity. In order to improve its activity, the lowering of the transcription rate of the ${\beta}$-galactosidase structural gene was attempted through competition between an inducer (L-arabinose) and an inducer analog (D-fucose). In the deep-well microtiter plate culture and lab-scale fermentor culture, it was demonstrated that the addition of D-fucose caused an improvement in specific ${\beta}$-galactosidase production, although ${\beta}$-galactosidase was produced as an IB. In particular, the addition of D-fucose after induction led to an increase in the specific activity of ${\beta}$-galactosidase IB. Finally, we confirmed that the addition of D-fucose after induction caused changes in the structure of ${\beta}$-galactosidase IB, with higher enzyme activity. Based on these results, we expect that an improved enzyme IB will be used as a biocatalyst of the enzyme bioprocess, because an enzyme IB can be purified easily and has physical durability.
Keywords
Partial repression; inducer analog; inclusion body${\beta}$-galactosidase;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
1 Bramhachari, P. V., P. B. Kavikishor, R. Ramadevi, R. Kumar, B. R. Rao, and S. K. Dubey. 2007. Isolation and characterization of mucous exopolysaccharide (EPS) produced by Vibrio furnissii strain VB0S3. J. Microbiol. Biotechnol. 17: 44-51   과학기술학회마을
2 Bukau, B., J. Weissman, and A. Horwich. 2006. Molecular chaperones and protein quality control. Cell 125: 443-451   DOI   ScienceOn
3 Carrio, M., N. Gonzalez-Montalban, A. Vera, A. Villaverde, and S. Ventura. 2005. Amyloid-like properties of bacterial inclusion bodies. J. Mol. Biol. 347: 1025-1037   DOI   ScienceOn
4 de Groot, N. S. and S. Ventura. 2006. Effect of temperature on protein quality in bacterial inclusion bodies. FEBS Lett. 580: 6471-6476   DOI   ScienceOn
5 Hardin, C., J. Edwards, A. Riell, D. Presutti, W. Miller, and D. Robertson. 2001. Time course assay of $\beta$-galactosidase, pp. 292-293. In: Cloning, Gene Expression, and Protein Purification; Experimental Procedures and Process Rationale. Oxford University Press
6 Jevsevar, S., V. Gaberc-Porekar, I. Fonda, B. Podobnik, J. Grdadolnik, and V. Menart. 2005. Production of nonclassical inclusion bodies from which correctly folded protein can be extracted. Biotechnol. Prog. 21: 632-639   DOI   ScienceOn
7 Miller, J. M. 1973. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
8 Mogk, A., M. P. Mayer, and E. Deuerling. 2002. Mechanisms of protein folding: Molecular chaperones and their application in biotechnology. Chembiochem 3: 807-814   DOI   ScienceOn
9 Schleif, R. 2000. Regulation of the L-arabinose operon of Escherichia coli. Trends Genet. 16: 559-565   DOI   ScienceOn
10 Sorensen, H. P., H. U. Sperling-Petersen, and K. K. Mortensen. 2003. A favorable solubility partner for the recombinant expression of streptavidin. Protein Expr. Purif. 32: 252-259   DOI   ScienceOn
11 Worrall, D. M. and N. H. Goss. 1989. The formation of biologically active $\beta$-galactosidase inclusion bodies in Escherichia coli. Aust. J. Biotechnol. 3: 28-32
12 Lee, Y.-J. and K.-H. Jung. 2007. Modulation of the tendency towards inclusion body formation of recombinant protein by the addition of glucose in the araBAD promoter system of Escherichia coli. J. Microbiol. Biotechnol. 17: 1898-1903   과학기술학회마을
13 Kapust, R. B. and D. S. Waugh. 1999. Escherichia coli maltosebinding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci. 8: 1668-1674   DOI   ScienceOn
14 Koo, T. Y. and T. H. Park. 2007. Expression of recombinant human growth hormone in a soluble form in Escherichia coli by slowing down the protein synthesis rate. J. Microbiol. Biotechnol. 17: 579-585   과학기술학회마을
15 Tokatlidis, K., P. Dhurjati, J. Millet, P. Beguin, and J. P. Aubert. 1991. High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D. FEBS Lett. 282: 205-208   DOI   ScienceOn
16 Ami, D., L. Bonecchi, S. Calì, G. Orsini, G. Tonon, and S. M. Doglia. 2003. FT-IR study of heterologous protein expression in recombinant Escherichia coli strains. Biochim. Biophys. Acta 1624: 6-10   DOI
17 Duetz, W. A., L. Ruedi, R. Hermann, K. O'Connor, J. Buchs, and B. Witholt. 2000. Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl. Environ. Microbiol. 66: 2641-2646   DOI   ScienceOn
18 Garcia-Fruitos, E., M. M. Carrio, A. Aris, and A. Villaverde. 2005. Folding of a misfolding-prone $\beta$-galactosidase in absence of DnaK. Biotechnol. Bioeng. 90: 869-875   DOI   ScienceOn
19 van den Berg, B., R. J. Ellis, and C. M. Dobson. 1999. Effects of macromolecular crowding on protein folding and aggregation. EMBO J. 18: 6927-6933   DOI   ScienceOn
20 Gonzalez-Montalban, N., E. Garcia-Fruitos, S. Ventura, A. Aris, and A. Villaverde. 2006. The chaperone DnaK controls the fractioning of functional protein between soluble and insoluble cell fractions in inclusion body-forming cells. Microb. Cell Fact. 5: 26   DOI   ScienceOn
21 Strandberg, L. and S.-O. Enfors. 1991. Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl. Environ. Microbiol. 57: 1669-1674
22 Ami, D., A. Natalello, P. Gatti-Lafranconi, M. Lotti, and S. M. Doglia. 2005. Kinetics of inclusion body formation studied in intact cells by FT-IR spectroscopy. FEBS Lett. 579: 3433-3436   DOI   ScienceOn
23 de Groot, N. S. and S. Ventura. 2006. Protein activity in bacterial inclusion bodies correlates with predicted aggregation rates. J. Biotechnol. 125: 110-113   DOI   ScienceOn
24 Vera, A., N. Gonzalez-Montalban, A. Aris, and A. Villaverde. 2007. The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol. Bioeng. 96: 1101-1106   DOI   ScienceOn
25 Joo, J.-H. and J.-W. Yun. 2005. Structural and molecular characterization of extracellular polysaccharides produced by a new fungal strain, Trichoderma erinaceum DG-312. J. Microbiol. Biotechnol. 15: 1250-1257   과학기술학회마을
26 Garcia-Fruitos, E., N. Gonzalez-Montalban, M. Morell, A. Vera, R. M. Ferraz, A. Arís, S. Ventura, and A. Villaverde. 2005. Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb. Cell Fact. 4: 27   DOI   ScienceOn
27 Hoffmann, F., J. van den Heuvel, N. Zidek, and U. Rinas. 2004. Minimizing inclusion body formation during recombinant protein production in Escherichia coli at bench and pilot plant scale. Enzyme Microb. Technol. 34: 235-241   DOI   ScienceOn
28 Ventura, S. and A. Villaverde. 2006. Protein quality in bacterial inclusion bodies. Trends Biotechnol. 24: 179-185   DOI   ScienceOn
29 Davis, G. D., C. Elisee, D. M. Newham, and R. G. Harrison. 1999. New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol. Bioeng. 65: 382-388   DOI   ScienceOn
30 Sorensen, H. P. and K. K. Mortensen. 2005. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J. Biotechnol. 115: 113-128   DOI   ScienceOn