Browse > Article

Bio-degradation of Phenol in Wastewater by Enzyme-loaded Membrane Reactor: Numerical Approach  

Barbieri, Giuseppe (National Research Council - Institute on Membrane Technology (ITM-CNR), via Pietro BUCCI, c/o The University of Calabria)
Choi, Seung-Hak (National Research Council - Institute on Membrane Technology (ITM-CNR), via Pietro BUCCI, c/o The University of Calabria)
Scura, Francesco (National Research Council - Institute on Membrane Technology (ITM-CNR), via Pietro BUCCI, c/o The University of Calabria)
Mazzei, Rosalinda (National Research Council - Institute on Membrane Technology (ITM-CNR), via Pietro BUCCI, c/o The University of Calabria)
Giorno, Lidietta (National Research Council - Institute on Membrane Technology (ITM-CNR), via Pietro BUCCI, c/o The University of Calabria)
Drioli, Enrico (National Research Council - Institute on Membrane Technology (ITM-CNR), via Pietro BUCCI, c/o The University of Calabria)
Kim, Jeong-Hoon (Environment & Resources Research Center, Green Chemistry Division, Korea Research Institute of Chemical Technology (KRICT))
Publication Information
Membrane Journal / v.19, no.1, 2009 , pp. 72-82 More about this Journal
Abstract
A mathematical model was written for simulating the removal of phenol from wastewater in enzyme-loaded membrane reactor (EMR). The numerical simulation program was developed so as to predict the degradation of phenol through an EMR. Numerical model proves to be effective in searching for optimal operating conditions and creating an optimal microenvironment for the biocatalyst in order to optimize productivity. In this study, several dimensionless parameters such as Thiele Modulus (${\phi}^2$, dimensionless Michaelis-Menten constant ($\xi$), Peclet number (Pe) were introduced to simplify their effects on system efficiency. In particular, the study of phenol conversion at different feed compositions shows that low phenol concentrations and high Thiele Modulus values lead to higher reactant degradation.
Keywords
wastewater treatment; numerical simulation; membrane reactor; bio-degradation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. Kumaran and Y. L. Paruchuri, 'Kinetics of phenol biotransformation', Wat. Res., 31, 11 (1997)   DOI   ScienceOn
2 A. Idris and K. Saed, 'Degradation of phenol in wastewater using anolyte produced from electrochemical generation of brine solution', Global Nest: the Int. J., 4, 139 (2002)
3 A. Bodalo, J. L. Gomez, E. Gomez, A. M. Hidalgo, M. Gomez, and A. M. Yelo, 'Removal of 4-chlorophenol by soybean peroxidase and hydrogen peroxide in a discontinuous tank reactor', Desalination, 195, 51 (2006)   DOI   ScienceOn
4 A. Aidan A. Hamad, M. Fayed, and M. Mehrvar, 'Experimental investigation of phenolic wastewater treatment using combined activated carbon and UV processes', Clean Techn. Environ. Policy, 7, 177 (2005)   DOI   ScienceOn
5 E. Erhan, B. Keskinler, G. Akay, and O. F. Algur, 'Removal of phenol from water by membrane-immobilized enzymes Part I. Dead-end filtration', J. Membr. Sci., 206, 361 (2002)   DOI   ScienceOn
6 B. Marrot, A. B.-Martinez, P. Moulin, and N. Roche, 'Biodegradation of high phenol concentration in a membrane bioreactor', Int. J. Chem. Reactor Eng., 6, A8 (2008)
7 R. O. de Faria, V. R. Moure, M. A. L.de A. Amazonas, N. Krieger, and D. A. Mitchell, 'The biotechnological potential of mushroom tyrosinases', Food Technol. Biotechnol., 45, 287 (2007)   ScienceOn
8 D. V.-Racki, U. Kragl, and A. Liese, 'Benefits of enzyme kinetics modelling', Chem. Biochem. Eng. Q., 17, 7 (2003)   ScienceOn
9 J. Zhang, G. Barbieri, F. Scura, L. Giorno, and E. Drioli, 'Modeling of two separate phase enzyme membrane reactors for kinetic resolution of naproxen ester', Desalination, 200, 514 (2006)   DOI   ScienceOn
10 David R. Lide, ed. Handbook of Chemistry and Physics. Diffusion coefficients in liquids at infinite dilution. 2003-2004, CRC Press
11 M. Bodzek, J. Bohdziewicz, and M. Kowalska, 'Immobilized enzyme membranes for phenol and cyanide decomposition', J. Membr. Sci., 113, 373 (1996)   DOI   ScienceOn
12 L. G. Fenoll, J. N. R.-Lopez, F. G.-Molina, F. G.-Canovas, and J. Tudela, 'Michaelis constants of mushroom tyrosinase with respect to oxygen in the presence of monophenol and diphenols', Int. J. Biochem. Cell Biol., 34, 332 (2002)   DOI   ScienceOn
13 J. K. Hong and K. H. Youm, 'Production of cyclodextrin using membrane-enzyme reactor', Membrane Journal, 8, 170 (1998)   과학기술학회마을   ScienceOn
14 J.-J. Xie, K.-K. Song, L. Qiu, Q. He, H. Huang, and Q.-X. Chen, 'Inhibitory effects of substrate analogues on enzyme activity and substrate specificities of mushroom tyrosinase', Food Chem., 103, 1075 (2007)   DOI   ScienceOn
15 M. Xiao, J. Zhou, Y. Tan, A. Zhang, Y. Xia, and L. Ji, 'Treatment of highly-concentrated phenol wastewater with an extractive membrane reactor using silicone rubber', Desalination, 195, 281 (2006)   DOI   ScienceOn
16 T.-P. Chung, P.-C. Wu, and R.-S. Juang, 'Process development for degradation of phenol by Pseudomonas putida in hollow-fiber membrane bioreactors', Biotechnol. Bioeng., 87, 119 (2004)   DOI   ScienceOn
17 J. Karam and J. A. Nicell, 'Potential applications of enzymes in waste treatment', J. Chem. Tech. Biotechnol., 69, 141 (1997)   DOI   ScienceOn
18 M. Carmona, A. D. Lucas, J. L. Valverde, B. Velasco, and J. F. Rodriguez, 'Combined adsorption and ion exchange equilibrium of phenol on Amberlite IRA-420', Chem. Eng. J., 117, 155 (2006)   DOI   ScienceOn
19 A. Sakurai, M. Masuda, and M. Sakakibara, 'Effect of surfactants on phenol removal by the method of polymerization and precipitation catalysed by Co Coprinus cinereus peroxidase', J. Chem. Technol. Biotechnol., 78, 952 (2003)   DOI   ScienceOn
20 A. Bodalo, J. L. Gomez, M. Gomez, G. Leon, A. M. Hidalgo, and M. A. Ruiz, 'Phenol removal from water by hybrid processes: study of the membrane process step', Desalination, 223, 323 (2008)   DOI   ScienceOn
21 A. B.-David, S. Bason, J. Jopp, Y. Oren, and V. Freger, 'Partitioning of organic solutes between water and polyimide layer of RO and NF membranes: Correlation to rejection', J. Membr. Sci., 281, 480 (2006)   DOI   ScienceOn
22 J. E. Prenosil and T. Hediger, 'Performance of membrane fixed biocatalyst reactors. I: Membrane reactor systems and modelling', Biotechnol. Bioeng., 31, 913 (1988)   DOI   ScienceOn
23 V. Papadimitrios, T. G. Sotiroudis, and A. Xenakis, 'Olive oil microemulsions as a biomimetic medium for enzymatic studies: oxidation of oleuropein', Journal of the American Oil Chemists Society (JAOCS), 82, 335 (2005)   DOI   ScienceOn
24 G. M. Riso, M. P. Belleville, D. Paolucci, and J. Sanchez, 'Progress in enzymatic membrane reactors-A review', J. Membr. Sci., 242, 189 (2004)   DOI   ScienceOn
25 A. Boshoff, M. H. Burton, and S. G. Burton, 'Optimization of catechol production by membrane-immobilized polyphenol oxidase: A modeling approach', Biotechnol. Bioeng., 83, 1 (2003)   DOI   ScienceOn
26 I. M. A.-Reesh, 'Predicting the performance of immobilized enzyme reactors using reversible Michaelis-Menten kinetics', Bioprocess. Eng., 17, 131 (1997)   DOI   ScienceOn
27 W. Edward, R. Bownes, W. D. Leukes, E. P. Jacobs, R. Sanderson, P. D. Rose, and S. G. Burton, 'A capillary membrane bioreactor using immobilized polyphenol oxidase for the removal of phenols from industrial effluents', Enzyme Microb. Technol., 24, 209 (1999)   DOI   ScienceOn
28 S. Ahn, S. Congeevaram, Y.-K. Choung, and J. Park, 'Enhanced phenol removal by floating fungal populations in a high concentration phenol-fed membrane bioreactor', Desalination, 221, 494 (2008)   DOI   ScienceOn
29 P. K. Patel, M. S. Mondal, S. Modi, and V. Behere, 'Kinetic studies on the oxidation of phenols by the horseradish peroxidase compound I', Biochim. Biophys. Acta, 1339, 79 (1997)
30 A. Lante, A. Crapisi, A. Krastanov, and P. Spettol, 'Biodegradation of phenols by laccase immobilized in a membrane reactor', Process Biochem., 26, 51 (2000)
31 G. Barbieri, A. Brunetti, F. Scura, G. F. Lentini, R. G. Agostino, M.-J. Kim, V. Formoso, E. Drioli, and K.-H. Lee, 'A Pd doped PVDF hollow fiber for the dissolved oxygen removal process', Korean Membrane J., 8, 1 (2006)   ScienceOn
32 E. Miland, M. R. Smyth, and C. O. Fagain, 'Phenol removal by modified peroxidases', J. Chem. Tech. Biotechnol., 67, 227 (1996)   DOI   ScienceOn
33 S. G. Burton, A. Boshoff, W. Edwards, and P. D. Rose, 'Biotrasnformation of phenols using immobilized polyphenol oxidase', J. Mol. Catal. B: Enzym., 5, 411 (1998)   DOI   ScienceOn
34 R.-S. Juang and S.-Y. Tsai, 'rowth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate' Biochem. Eng., 31, 133 (2006)   DOI   ScienceOn
35 A. M. Girelli, E. Mattei, and A. Messina, 'Phenols removal by immobilizaed tyrosinase reactor in on-line high performance liquid chromatography', Anal. Chim. Acta 580, 271 (2006)   DOI   ScienceOn
36 S. Rengaraj, S.-H. Moon, R. Sivabalan, B. Arabindoo, and V. Murugesan, 'Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste: rubber seed coat', J. Hazard. Mater., B89, 185 (2002)   DOI   ScienceOn
37 R.-S. Juang and S.-Y. Tsai, 'Enhanced biodegradation of mixed phenol and sodium salicylate by Pseudomonas putida in membrane contactors', Water Res., 40, 3517 (2006)   DOI   ScienceOn
38 Y. M. Awad and N. S. Abuzaid, 'The influence of residence time on the anode oxidation of pheno', Sep. Purif. Technol., 18, 227 (2000)   DOI   ScienceOn
39 W. Kujawski, A. Warszawski, W. Ratajczak, T. Porebski, W. Capala, and I. Ostrowska, 'Removal of phenol from wastewater by different separation techniques', Desalination, 163, 287 (2004)   DOI   ScienceOn
40 B. S.-Sobecka, M. Tomaszewska, and A. W. Morawski, 'Removal of micropollutants from water by ozonation/biofiltration process', Desalination, 182, 151 (2005)   DOI   ScienceOn
41 A. M. Girelli, E. Mattei, and A. Messina, 'Immobilized tyrosinase reactor for on-line HPLC application: Development and characterization', Sens. Actuators, B, 121, 515 (2007)   DOI   ScienceOn
42 R. Mazzei, L. Giorno, A. Spadafora, S. Mazzuca, and E. Drioli, 'Improvement of b-glucosidase activity of Olea europaea fruit extracts processed by membrane technology', Korean Membrane J., 8, 58 (2006)   ScienceOn
43 Y. Li and K.-C. Loh, Continuous phenol biodegradation at high concentrations in an immobilized-cell hollow fiber membrane bioreactor', J. Appl. Polym. Sci., 105, 1732 (2007)   DOI   ScienceOn
44 E. E. Gonzo and J. C. Gottifredi, 'A simple and accurate method for simulation of hollow fiber biocatalyst membrane reactors', Biochem. Eng. J., 37, 80 (2007)   DOI   ScienceOn
45 Y. Li and C. Wang, 'Phenol biodegradation in hybrid hollow-fiber membrane bioreactors', World J. Microbiol. Biotechnol., 24, 1843 (2008)   DOI   ScienceOn
46 G. Akay, E. Erhan, B. Keskinler, and O. F. Algur, 'Removal of phenol from water by membrane-im mobilized enzymes Part II. Cross-flow filtration', J. Membr. Sci., 206, 61 (2002)   DOI   ScienceOn
47 S. Bhatia, W. S. Long, and A. H. Kamaruddin, 'Enzymatic membrane reactor for the kinetic resolution of racemic ibuprofen ester: modeling and experimental studies', Chem. Eng. Sci., 59, 5061 (2004)   DOI   ScienceOn
48 J. C. Espin, R. Varon, L. G. Fenoll, A. A. Gilabert, P. A. G.-Ruiz, J. T.udela, and F. G.-Canovas, 'Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase', Eur. J. Biochem., 267, 1270 (2000)   DOI   ScienceOn
49 L. Giorno, E. D'Amore, R. Mazzei, E. Piacentini, J. Jhang, E. Drioli, R. Cassano, and N. Picci, 'An innovative approach to improve the performance of a two separate phase enzyme membrane reactor by immobilizing lipase in presence of emulsion', J. Membr. Sci., 295, 95 (2007)   DOI   ScienceOn