Development of Bioreactor System for L-Tyrosine Synthesis Using Thermostable Tyrosine Phenol-Lyase

  • Published : 2007.01.31

Abstract

An efficient enzyme system for the synthesis of L-tyrosine was developed using a fed-batch reactor with continuous feeding of phenol, pyruvate, and ammonia. A thermo- and chemostable tyrosine phenol-lyase from Symbiobacterium toebii was employed as the biocatalyst in this work. The enzyme was produced using a constitutive expression system in Escherichia coli BL21, and prepared as a soluble extract by rapid clarification, involving treatment with 40% methanol in the presence of excess ammonium chloride. The stability of the enzyme was maintained for at least 18 h under the synthesis conditions, including 75 mM phenol at pH 8.5 and $40^{\circ}C$. The fed-batch system (working volume, 0.51) containing 1.0 kU of the enzyme preparation was continuously fed with two substrate preparations: one containing 2.2 M phenol and 2.4 M sodium pyruvate, and the other containing 0.4 mM pyridoxal-5-phosphate and 4M ammonium chloride (pH 8.5). The system produced 130g/I of L-tyrosine within 30h, mostly as precipitated particles, upon continuous feeding of the substrates for 22 h. The maximum conversion yield of L-tyrosine was 94% on the basis of the supplied phenol.

Keywords

References

  1. Askonas, B. A. 1951. The use of organic solvents at low temperature for the separation of enzymes: Application to aqueous rabbit muscle extract. Biochem. J. 48: 42-48 https://doi.org/10.1042/bj0480042
  2. Banderet, L. E. and H. R. Lieberman. 1989. Treatment with tyrosine, a neurotransmitter precursor, reduces environmental stress in humans. Brain Res. Bull. 22: 759-762 https://doi.org/10.1016/0361-9230(89)90096-8
  3. Enei, H., H. Nakazawa, S. Okumura, and H. Yamada. 1973. Synthesis of L-tyrosine or 3,4-dihydroxy-L-phenylalanine from pyruvic acid, ammonia and phenol or pyrocatechol. Agric. Biol. Chem. 37: 725-735 https://doi.org/10.1271/bbb1961.37.725
  4. Foor, F., N. Morin, and K. A. Bostian. 1993. Production of L-dihydroxyphenylalanine in Escherichia coli with the tyrosine phenol-lyase gene cloned from Erwinia herbicola. Appl. Environ. Microbiol. 59: 3070-3075
  5. Fukui, S., S. I. Ikeda, M. Fujimura, H. Yamada, and H. Kumagai. 1975. Production of L-tryptophan, L-tyrosine and their analogues by use of immobilized tryptophanases and immobilized $\beta$-tyrosinase. Eur. J. Appl. Microbiol. 1: 25- 39 https://doi.org/10.1007/BF01880618
  6. Gelenberg, A. J. and C. J. Gibson. 1984. Tyrosine for the treatment of depression. Nutr. Health 3: 163-173 https://doi.org/10.1177/026010618400300305
  7. Herskovits, T. T., B. Gadegbeku, and H. Jaillet. 1970. On the structural stability and solvent denaturation of proteins. J. Biol. Chem. 245: 2588-2598
  8. Heuberger, M., T. Drobek, and N. D. Spencer. 2005. Interaction forces and morphology of a protein-resistant poly(ethylene glycol) layer. Biophys. J. 88: 495-504 https://doi.org/10.1529/biophysj.104.045443
  9. Kim, J. H., J. J. Song, B. G. Kim, M. H. Sung, and S. C. Lee. 2004. Enhanced stability of tyrosine phenol-lyase from Symbiobacterium toebii by DNA shuffling. J. Microbiol. Biotechnol. 14: 153-157
  10. Koyanagi, T., T. Katayama, H. Suzuki, H. Nakazawa, K. Yokozeki, and H. Kumagai. 2005. Effective production of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) with Erwinia herbicola cells carrying a mutant transcriptional regulator TyrR. J. Biotechnol. 115: 303-306 https://doi.org/10.1016/j.jbiotec.2004.08.016
  11. Kudou, M., K. Shiraki, S. Fujiwara, T. Imanaka, and M. Takagi. 2003. Prevention of thermal inactivation and aggregation of lysozyme by polyamines. Eur. J. Biochem. 270: 4547-4554 https://doi.org/10.1046/j.1432-1033.2003.03850.x
  12. Kumagai, H., H. Yamada, H. Matsui, H. Ohkishi, and K. Ogata. 1970. Tyrosine phenol lyase. I. Purification, crystallization, and properties. J. Biol. Chem. 245: 1767-1772
  13. Kupletskaya, M. B. 1979. Tyrosine and 3,4- dihydroxyphenylalanine synthesis by the bacterium Citrobacter freundii. Prinkl. Biokhim. Microbiol. 15: 827-831
  14. Lee, S. G., H. S. Ro, S. P. Hong, K. J. Lee, J. W. Wang, D. N. Tae, K. N. Uhm, S. G. Bang, Y. J. Kim, and M. H. Sung. 1996. Production of 3,4-dihydroxyphenyl-L-alanine by using the $\beta$-tyrosinase of Citrobacter freundii overexpressed in recombinant Escherichia coli. Kor. J. Appl. Microbiol. Biotechnol. 24: 44-49
  15. Lee, S. G., H. S. Ro, S. P. Hong, E. H. Kim, and M. H. Sung. 1996. Production of L-DOPA by thermostable tyrosine phenol-lyase of a thermophilic Symbiobacterium species overexpressed in recombinant Escherichia coli. J. Microbiol. Biotechnol. 6: 98-102
  16. Lee, S. G., S. P. Hong, Y. H. Choi, Y. J. Chung, and M. H. Sung. 1997. Thermostable tyrosine phenol-lyase of Symbiobacterium sp. SC-1: Gene cloning, sequence determination, and overproduction in Escherichia coli. Protein Expr. Purif. 11: 263-270 https://doi.org/10.1006/prep.1997.0792
  17. Lee, S. G., S. P. Hong, and M. H. Sung. 1999. Development of an enzymatic system for the production of dopamine from catechol, pyruvate, and ammonia. Enz. Microb. Technol. 25: 298-302 https://doi.org/10.1016/S0141-0229(99)00071-X
  18. Neuhauser, W., M. Steininger, D. Haltrich, K. D. Kulbe, and B. Nidetzky. 1998. A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenase-catalyzed coenzyme regeneration. Biotechnol. Bioeng. 60: 277-282 https://doi.org/10.1002/(SICI)1097-0290(19981105)60:3<277::AID-BIT2>3.0.CO;2-E
  19. Para, G., P. Lucciardi, and J. Baratti. 1985. Synthesis of Ltyrosine by immobilized Escherichia intermedia cells. Appl. Microbiol. Biotechnol. 21: 273-279
  20. Schulze, B. and M. G. Wubbolts. 1999. Biocatalysis for industrial production of fine chemicals. Curr. Opin. Biotechnol. 10: 609-615 https://doi.org/10.1016/S0958-1669(99)00042-7
  21. Shinttzky, M., F. Nudelman, Y. Barda, R. Haimovitz, E. Chen, and D. W. Deamer. 2002. Unexpected differences between D- and L-tyrosine lead to chiral enhancement in racemic mixtures. Orig. Life Evol. Biosph. 32: 285-297 https://doi.org/10.1023/A:1020535415283
  22. Suzuki, S., S. Horinouchi, and T. Beppu. 1988. Growth of a tryptophanase-producing thermophile, Symbiobacterium thermophilum gen. nov., sp. nov., is dependant on coculture with a Bacillus sp. J. Gen. Microbiol. 134: 2353-2362
  23. Yamada, H., H. Kumagai, N. Kashima, H. Torii, H. Enei, and S. Okumura. 1972. Synthesis of L-tyrosine from pyruvate, ammonia and phenol by crystalline tyrosine phenol lyase. Biochem. Biophys. Res. Commun. 46: 370-374 https://doi.org/10.1016/S0006-291X(72)80148-7
  24. Yamada, H. and H. Kumagai. 1975. Synthesis of L-tyrosine related amino acids by beta-tyrosinase. Adv. Appl. Microbiol. 19: 249-288 https://doi.org/10.1016/S0065-2164(08)70431-3
  25. Young, S. N. 1996. Behavioral effects of dietary neurotransmitter precursors: Basic and clinical aspects. Neurosci. Biobehav. Rev. 20: 313-323 https://doi.org/10.1016/0149-7634(95)00022-4