• Title/Summary/Keyword: bioactive metabolites

Search Result 171, Processing Time 0.031 seconds

The Endophytic Bacteria Bacillus velezensis Lle-9, Isolated from Lilium leucanthum, Harbors Antifungal Activity and Plant Growth-Promoting Effects

  • Khan, Mohammad Sayyar;Gao, Junlian;Chen, Xuqing;Zhang, Mingfang;Yang, Fengping;Du, Yunpeng;Moe, The Su;Munir, Iqbal;Xue, Jing;Zhang, Xiuhai
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.668-680
    • /
    • 2020
  • Bacillus velezensis is an important plant growth-promoting rhizobacterium with immense potential in agriculture development. In the present study, Bacillus velezensis Lle-9 was isolated from the bulbs of Lilium leucanthum. The isolated strain showed antifungal activities against plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea and Fusarium fujikuroi. The highest percentage of growth inhibition i.e., 68.56±2.35% was observed against Fusarium oxysporum followed by 63.12 ± 2.83%, 61.67 ± 3.39% and 55.82 ± 2.76% against Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several were identified as antimicrobial agents such as diketopiperazines, cyclo-peptides, linear peptides, latrunculin A, 5α-hydroxy-6-ketocholesterol, (R)-S-lactoylglutathione, triamterene, rubiadin, moxifloxacin, 9-hydroxy-5Z,7E,11Z,14Z-eicosatetraenoic acid, D-erythro-C18-Sphingosine, citrinin, and 2-arachidonoyllysophosphatidylcholine. The presence of these antimicrobial compounds in the bacterial culture might have contributed to the antifungal activities of the isolated B. velezensis Lle-9. The strain showed plant growth-promoting traits such as production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation and phosphate solubilization. IAA production was accelerated with application of exogenous tryptophan concentrations in the medium. Further, the lily plants upon inoculation with Lle-9 exhibited improved vegetative growth, more flowering shoots and longer roots than control plants under greenhouse condition. The isolated B. velezensis strain Lle-9 possessed broad-spectrum antifungal activities and multiple plant growth-promoting traits and thus may play an important role in promoting sustainable agriculture. This strain could be developed and applied in field experiments in order to promote plant growth and control disease pathogens.

Stratum Corneum Lipids as Bioactive Materials for Atopic Dermatitis (생체활성 각질층 지질 - 아토피 피부염 관리를 중심으로 -)

  • Park Byeong Deog;Youm Jong Kyung;Ahn Sung Ku;Lee Seung Hun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.345-352
    • /
    • 2004
  • There are two paradigms to explain the atopic dermatitis. The first is outside-inside paradigm and the second is inside-outside paradigm. According to the outside-inside paradigm the best way to treat the atopic dermatitis is recovery of skin barrier function. The barrier function is maintained by the specific structure of stratum corneum, which is constructed from corneocytes and intercellular lipids. In terms of lipid structures of SC in atopic dermatitis and lamellar ichthyosis, they contain more fluid hexagonal gel structures in SC and show deficiencies in free fatty acids, especially long chains and certain ceramides. With this reason, moisturizer which has the lamellar structure and restoring function of intrinsic intercellualr long periodicity phase can maintain and restore the lamellar structure of intercellular lipids in SC. The moisturizers containing ceramide or pseudoceramide also seem to be reasonable therapy for atopic dermatitis and several skin diseases, which interrelated with impaired skin harrier. By the way, according to the inside-outside paradigm, immune response including helper T cells, IgE, eosinophils is related. It is effective treatment of atopic dermititis to restore imbalance between Th1 and Th2 cells. Even though several kinds of immune-suppressor were introduced, these can affect the intrinsic immune function. SPC and S1P, metabolites of ceramide, would be interesting because they have the function of wound healing and immune modulating properties.

Modulatory Effect of Four Azulene Derivatives from the Fruiting Bodies of Lactarius hatsudake on Interferon-$\gamma$ Production (젖버섯아재비 자실체로부터 분리한 Azulene계 화합물이 Interferon-$\gamma$ 생성에 미치는 영향)

  • Xu, Guang Hua;Kim, Jae-Wha;Li, Gao;Yoo, Ick-Dong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.2
    • /
    • pp.151-156
    • /
    • 2010
  • Investigation of secondary bioactive metabolites from the fruiting bodies of Lactarius hatsudake led to the isolation of four azulene derivatives by means of repeated column chromatography and preparative HPLC, and they were identified as 1-formyl-4-methyl-7-isopropyl azulene (1), lactaroviolin (2), 4-methyl-7-isopropyl-azulene-1-carboxylic acid (3), and 1-formyl-4-methyl-7-(1-hydroxy-1-methylethyl) azulene (4) by their physico-chemical properties and spectroscopic analysis. The isolated compounds were evaluated for the effects on modulation of cytokines in natural killer cell line (NK92 cells). Compounds 1 and 4 strongly inhibited IFN-$\gamma$ production in a dose-dependent manner, corresponding to 101.3 % and 92.7 % inhibition at 400 ${\mu}M$, and 11.9 % and 24.1 % at 100 ${\mu}M$, respectively, whereas compounds 2 and 3 showed weak inhibitory effect on INF-$\gamma$ production, corresponding to 45.9 % and 18.0 % inhibition at 400 ${\mu}M$.

Analysis of Tubulysin Biosynthetic Genes in Archangium gephyra (Archangium gephyra의 tubulysin 생합성 유전자 분석)

  • Choi, Juo;Park, Taejoon;Kang, Daun;Lee, Jeongju;Kim, Yungpil;Lee, Pilgoo;Chung, Gregory J.Y.;Cho, Kyungyun
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.458-465
    • /
    • 2021
  • Tubulysins are a group of bioactive secondary metabolites from myxobacteria exhibiting strong anticancer activity against various cancer cell lines. In this study, we describe the identification of putative tubulysin biosynthetic gene clusters (tubA~tubF) in the genome sequences of two tubulysin-producing myxobacterial strains, Archangium gephyra MEHO_002 and MEHO_004. The inactivation of the putative tubulysin biosynthetic genes resulted in a tubulysin-production defect. The DNA sequences of the A. gephyra MEHO_002 and MEHO_004 tubulysin biosynthetic genes were 97% identical, and the amino acid sequences of the encoded proteins shared a similarity of 97-100%. The nucleotide sequences of the tubulysin biosynthetic gene clusters in MEHO_002 and MEHO_004 were 86% identical to that in Cystobacter sp. SBCb004 known as a tubulysin-producing myxobacterium, and the organization of the clusters was identical except for the lack of a tubZ gene in the clusters in MEHO_002 and MEHO_004. The amino acid sequences of the proteins encoded by each gene were 88-97% similar to those encoded by SBCb004, and the domain compositions of the proteins were also identical.

Acid treatment effects on the contents of quercetin glycosides and aglycone in red onion powder (산처리에 의한 적양파 분말의 quercetin 배당체와 aglycone의 농도변화)

  • Kim, Mi-Ryung;Lim, Jun-Hyung;Song, Ji-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.115-125
    • /
    • 2022
  • Flavonoids are bioactive plant metabolites that have a range of beneficial effects on human health. Quercetin 4'-glycoside (Q4'G), quercetin 3,4'-diglycoside (Q3,4'G), and quercetin aglycone (QA) are the main flavonoids found in onions. QA, in particular, is likely to have a greater biological effect than glycosides. To develop an onion extract with high quercetin content, the optimal extraction conditions for red onion powder containing the outer layer of the onion were determined. The effects of acid treatment on the concentration of quercetin glycosides and QA were evaluated. The flavonoids of red onion powder were optimally extracted under 60-70% ethanol at 70℃ for 2 h. The deglycosylation of Q3,4'G and an increase in Q4'G content occurred within 6 h of 0.2% acetic acid treatment. The QA content and deglycosylation of Q4'G eventually peaked at 24 h. In addition, QA content and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity were highly correlated, with a correlation coefficient of 0.90.

Increased Antioxidants of Agastache rugosa by the Night Interruption Time (야파(night interruption)처리에 의한 배초향의 항산화 물질 증가)

  • Kim, Sungjin;Noh, Seungwon;Park, Jongseok
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.319-324
    • /
    • 2022
  • The objective of this study was to determine the proper night interruption of photoperiods and dark periods for accumulating bioactive compounds of Agastache rugosa without decreasing plant growth. Five-week-old seedlings were transplanted in a DFT system with white LEDs. A. rugosa was treated with night interruption time treatments of 18:1:2:3, 18:2:2:2, 18:3:2:1 (light:dark:light:dark), and 20:4 (control) for 4 weeks. There were no significant differences except for leaf length, leaf width, and the number of flowers. The content of antioxidants in the shoot of A. rugosa was high in tilianin and acacetin, and the content of rosmarinic acid (RA) was significantly higher in the underground part. The RA content per dry weight of A. rugosa was 47.92 and 51.46% higher than that of the control in 18:1:2:3 and 18:2:2:2, and tilianin and acactin per dry weight were significantly higher in 18:3:2:1. There was no significant difference in growth due to the same day light integral, but 18:2:2:2 showed high total polyphenol contents. Therefore, it is thought that the effect of increasing secondary metabolites of A. rugosa without degradation of growth can be expected through night interruption treatment in plant factory cultivation systems using artificial light.

Enhanced γ-aminobutyric acid and sialic acid in fermented deer antler velvet and immune promoting effects

  • Yoo, Jiseon;Lee, Juyeon;Zhang, Ming;Mun, Daye;Kang, Minkyoung;Yun, Bohyun;Kim, Yong-An;Kim, Sooah;Oh, Sangnam
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.166-182
    • /
    • 2022
  • Deer antler velvet is widely used in traditional medicine for its anti-aging, antioxidant, and immunity-enhancing effects. However, few studies have reported on the discovery of probiotic strains for deer antler fermentation to increase functional ingredient absorption. This study evaluated the ability of probiotic lactic acid bacteria to enhance the concentrations of bioactive molecules (e.g., sialic acid and gamma-aminobutyric acid [GABA]) in extracts of deer antler velvet. Seventeen strains of Lactobacillus spp. that were isolated from kimchi and infant feces, including L. sakei, L. rhamnosus, L. brevis, and L. plantarum, and those that improved the life span of Caenorhabditis elegans were selected for evaluation. Of the 17 strains, 2 (L. rhamnosus LFR20-004 and L. sakei LFR20-007) were selected based on data showing that these strains increased both the sialic acid and GABA contents of deer antler extract after fermentation for 2 d and significantly improved the life span of C. elegans. Co-fermentation with both strains further increased the concentrations of sialic acid, GABA, and metabolites such as short-chain fatty acids and amino acids. We evaluated the biological effects of the fermented antler velvet (FAV) on the antibacterial immune response in C. elegans by assessing worm survival after pathogen infection. The survival of the C. elegans conditioned with FAV for 24h was significantly higher compared with that of the control worm group fed only normal feed (non-pathogenic E. coli OP50) exposed to E. coli O157:H7, Salmonella typhi, and Listeria monocytogenes. To evaluate the protective effects of FAV on immune response, cyclophosphamide (Cy), an immune-suppressing agent was treated to in vitro and in vivo. We found that FAV significantly restored viability of mice splenocytes and immune promoting-related cytokines (interleukin [IL]-6, IL-10, inducible nitric oxide synthase [iNOS], interferon [IFN]-γ, and tumor necrosis factor [TNF]-α) were activated compared to non-fermented deer antlers. This finding indicated the protective effect of FAV against Cy-induced cell death and immunosuppressed mice. Taken together, our study suggests that immune-promoting antler velvet can be produced through fermentation using L. rhamnosus LFR20-004 and L. sakei LFR20-007.

Anti-inflammation and Anti-cancer Activity of Methanol Extract of Antarctic Lichen, Usnea Aurantiaco-atra (남극 지의류 Usnea Aurantiaco-atra의 메탄올 추출물의 항염증 및 항암 활성)

  • Sung-Suk Suh
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.978-986
    • /
    • 2023
  • Inflammation by the innate immune system is a protective mechanism of the organism against infection-mediated environmental factors. It is also responsible for the pathogenesis of various human diseases, including the progression of cancer. Lichens are receiving increasing attention as a source of bioactive molecules with therapeutic potential for a variety of diseases. Additionally, the antioxidant, anti-inflammatory, and anticancer potential of lichen and its secondary metabolites have been widely reported. However, the underlying mechanism is still unknown. In the present study, to investigate molecular mechanisms of anti-inflammation and anti-cancer activity in the Antarctic lichen, Usnea aurantiaco-atra, methanol extract of Usnea aurantiaco-atra (MEUS) was used in vitro assays in RAW 264.7 macrophages cell and HCT116 colon cancer cells. Based on our data, MEUS had the anti-inflammatory activity through the modulation of main inflammatory indicators such as COX-2, IL-6, iNOS, TNF-α and NO production in a concentration-dependent manner. In addition, we observed that MEUS had cytotoxic activity against HCT116 colon cancer cells in a concentration-dependent manner, leading to a significantly reduced proliferation of the cancer cells through apoptotic induction by activating caspase-3. Taken together, this work firstly reported the anti-inflammatory and anti-cancer activities of an Antarctic lichen, Usnea aurantiaco-atra, and MEUS may provide a new insight into the molecular mechanisms underlying a link between inflammation and cancer.

Evolutionary Explanation for Beauveria bassiana Being a Potent Biological Control Agent Against Agricultural Pests

  • Han, Jae-Gu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.27-28
    • /
    • 2014
  • Beauveria bassiana (Cordycipitaceae, Hypocreales, Ascomycota) is an anamorphic fungus having a potential to be used as a biological control agent because it parasitizes a wide range of arthropod hosts including termites, aphids, beetles and many other insects. A number of bioactive secondary metabolites (SMs) have been isolated from B. bassiana and functionally verified. Among them, beauvericin and bassianolide are cyclic depsipeptides with antibiotic and insecticidal effects belonging to the enniatin family. Non-ribosomal peptide synthetases (NRPSs) play a crucial role in the synthesis of these secondary metabolites. NRPSs are modularly organized multienzyme complexes in which each module is responsible for the elongation of proteinogenic and non-protein amino acids, as well as carboxyl and hydroxyacids. A minimum of three domains are necessary for one NRPS elongation module: an adenylation (A) domain for substrate recognition and activation; a tholation (T) domain that tethers the growing peptide chain and the incoming aminoacyl unit; and a condensation (C) domain to catalyze peptide bond formation. Some of the optional domains include epimerization (E), heterocyclization (Cy) and oxidation (Ox) domains, which may modify the enzyme-bound precursors or intermediates. In the present study, we analyzed genomes of B. bassiana and its allied species in Hypocreales to verify the distribution of NRPS-encoding genes involving biosynthesis of beauvericin and bassianolide, and to unveil the evolutionary processes of the gene clusters. Initially, we retrieved completely or partially assembled genomic sequences of fungal species belonging to Hypocreales from public databases. SM biosynthesizing genes were predicted from the selected genomes using antiSMASH program. Adenylation (A) domains were extracted from the predicted NRPS, NRPS-like and NRPS-PKS hybrid genes, and used them to construct a phylogenetic tree. Based on the preliminary results of SM biosynthetic gene prediction in B. bassiana, we analyzed the conserved gene orders of beauvericin and bassianolide biosynthetic gene clusters among the hypocrealean fungi. Reciprocal best blast hit (RBH) approach was performed to identify the regions orthologous to the biosynthetic gene cluster in the selected fungal genomes. A clear recombination pattern was recognized in the inferred A-domain tree in which A-domains in the 1st and 2nd modules of beauvericin and bassianolide synthetases were grouped in CYCLO and EAS clades, respectively, suggesting that two modules of each synthetase have evolved independently. In addition, inferred topologies were congruent with the species phylogeny of Cordycipitaceae, indicating that the gene fusion event have occurred before the species divergence. Beauvericin and bassianolide synthetases turned out to possess identical domain organization as C-A-T-C-A-NM-T-T-C. We also predicted precursors of beauvericin and bassianolide synthetases based on the extracted signature residues in A-domain core motifs. The result showed that the A-domains in the 1st module of both synthetases select D-2-hydroxyisovalerate (D-Hiv), while A-domains in the 2nd modules specifically activate L-phenylalanine (Phe) in beauvericin synthetase and leucine (Leu) in bassianolide synthetase. antiSMASH ver. 2.0 predicted 15 genes in the beauvericin biosynthetic gene cluster of the B. bassiana genome dispersed across a total length of approximately 50kb. The beauvericin biosynthetic gene cluster contains beauvericin synthetase as well as kivr gene encoding NADPH-dependent ketoisovalerate reductase which is necessary to convert 2-ketoisovalarate to D-Hiv and a gene encoding a putative Gal4-like transcriptional regulator. Our syntenic comparison showed that species in Cordycipitaceae have almost conserved beauvericin biosynthetic gene cluster although the gene order and direction were sometimes variable. It is intriguing that there is no region orthologous to beauvericin synthetase gene in Cordyceps militaris genome. It is likely that beauvericin synthetase was present in common ancestor of Cordycipitaceae but selective gene loss has occurred in several species including C. militaris. Putative bassianolide biosynthetic gene cluster consisted of 16 genes including bassianolide synthetase, cytochrome P450 monooxygenase, and putative Gal4-like transcriptional regulator genes. Our synteny analysis found that only B. bassiana possessed a bassianolide synthetase gene among the studied fungi. This result is consistent with the groupings in A-domain tree in which bassianolide synthetase gene found in B. bassiana was not grouped with NRPS genes predicted in other species. We hypothesized that bassianolide biosynthesizing cluster genes in B. bassiana are possibly acquired by horizontal gene transfer (HGT) from distantly related fungi. The present study showed that B. bassiana is the only species capable of producing both beauvericin and bassianolide. This property led to B. bassiana infect multiple hosts and to be a potential biological control agent against agricultural pests.

  • PDF

Mass Proliferation of Hibiscus hamabo Adventitious Root in an Air-lift Bioreactor, and the Antioxidant and Whitening Activity of the Extract (생물반응기를 이용한 황근 부정근의 대량증식과 추출물의 항산화 및 미백 활성 평가)

  • Lee, Jong-Du;Hyun, Ho Bong;Hyeon, Hyejin;Jang, Eunbi;Ko, Min-Hee;Yoon, Weon-Jong;Ham, Young Min;Jung, Yong-Hwan;Choi, Hwon;O, Eu Gene;Oh, Daeju
    • Korean Journal of Plant Resources
    • /
    • v.35 no.4
    • /
    • pp.435-444
    • /
    • 2022
  • Hibiscus hamabo Sieb. et Zucc. (yellow hibiscus) is a deciduous semi-shrub plant and mainly growing in Jeju Island. This is known the unique wild hibiscus genus and classified as an 2nd grade of endangered plant for Korean Red List. In previous studies, properties of germination, ecological, genetical and salt resistance have been reported. In this study, we investigated mass-proliferated adventitious root using bioreactor, antioxidant and whitening effects to conduct functional ingredients. Yellow hibiscus were collected from Gujwa, Jeju by prior permission and they were introduced by explant type and various medium composition after surface sterilization. As a result, seed response rates were evaluated at range of 51.17~51.83%, in terms of comprehensive efficiency of shoot and root formation. In the case of adventitious root propagation condition was confirmed in half strength Murashige and Skoog medium salts, 30 mg/L sucrose, and 2 mg/L indole-3-butyric acid for 8 weeks in 5,000 mL bioreactor. We also compared between relationship with biomass and secondary metabolites accumulation by total phenolics content, the flavonoid content, DPPH free radical scavenging activity and melanin content. The results indicated that adventitious root mass proliferation, antioxidant and whitening effect could develop value of the high-quality cosmeceutical ingredient and further metabolite studies.