Modulatory Effect of Four Azulene Derivatives from the Fruiting Bodies of Lactarius hatsudake on Interferon-$\gamma$ Production

젖버섯아재비 자실체로부터 분리한 Azulene계 화합물이 Interferon-$\gamma$ 생성에 미치는 영향

  • Xu, Guang Hua (College of Pharmacy, Yanbian University) ;
  • Kim, Jae-Wha (Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Li, Gao (College of Pharmacy, Yanbian University) ;
  • Yoo, Ick-Dong (Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • ;
  • 김재화 (한국생명공학연구원 화학생물연구센터) ;
  • ;
  • 유익동 (한국생명공학연구원 화학생물연구센터)
  • Received : 2010.03.23
  • Accepted : 2010.06.12
  • Published : 2010.06.30

Abstract

Investigation of secondary bioactive metabolites from the fruiting bodies of Lactarius hatsudake led to the isolation of four azulene derivatives by means of repeated column chromatography and preparative HPLC, and they were identified as 1-formyl-4-methyl-7-isopropyl azulene (1), lactaroviolin (2), 4-methyl-7-isopropyl-azulene-1-carboxylic acid (3), and 1-formyl-4-methyl-7-(1-hydroxy-1-methylethyl) azulene (4) by their physico-chemical properties and spectroscopic analysis. The isolated compounds were evaluated for the effects on modulation of cytokines in natural killer cell line (NK92 cells). Compounds 1 and 4 strongly inhibited IFN-$\gamma$ production in a dose-dependent manner, corresponding to 101.3 % and 92.7 % inhibition at 400 ${\mu}M$, and 11.9 % and 24.1 % at 100 ${\mu}M$, respectively, whereas compounds 2 and 3 showed weak inhibitory effect on INF-$\gamma$ production, corresponding to 45.9 % and 18.0 % inhibition at 400 ${\mu}M$.

버섯유래 생리활성물질을 탐색하고자, 젖버섯아재비 자실체로부터 각종 컬럼크로마토그래피 및 HPLC 등 기법에 의하여 4종의 azulene계 화합물을 순수히 분리정제 하였다. 분리된 화합물은 각종 물리화학적 특성 및 분광학적 분석 자료에 의하여 1-formyl-4-methyl-7-isopropyl azulene (1), lactaroviolin (2), 4-methyl-7-isopropyl-azulene-1-carboxylic acid (3) 및 1-formyl-4-methyl-7-(1-hydroxy-1-methylethyl) azulene (4)로 동정되었다. 이들 화합물의 인터페론 감마 생성에 미치는 영향을 조사하였다. 화합물 1과 4는 자연살해세포주(NK92 cell)에서 인터페론 감마 생성을 농도 의존적으로 억제하였으며, 400 ${\mu}M$농도에서 각각 101.3 %와 92.7 %, 100 ${\mu}M$농도에서 각각 11.9 %와 24.1 %의 높은 저해활성을 보였으며, 화합물 2와 3은 400 ${\mu}M$농도에서 45.9 %와 18.0 %의 다소 낮은 저해활성을 나타내었다.

Keywords

References

  1. S. Petska, J. A. Langer, K. C. Zoon, and C. E. Samuel, Interferons and their actions, Annu. Rev. Biochem., 56, 727 (1987). https://doi.org/10.1146/annurev.bi.56.070187.003455
  2. D. J. Lindner, Interferons as antiangiogenic agents, Curr. Oncol. Rep., 4, 510 (2002). https://doi.org/10.1007/s11912-002-0065-4
  3. C. A. Bonjardim, P. C. P. Ferreira, and E. G. Kroon, Interferons: Signaling, antiviral and viral evasion, Immunol. Lett., 122, 1 (2009). https://doi.org/10.1016/j.imlet.2008.11.002
  4. E. De Maeyer and J. De Maeyer-Guignard, Type I interferons, Intern. Rev. Immunol., 17, 53 (1998). https://doi.org/10.3109/08830189809084487
  5. K. Schroder, P. J. Hertzog, T. Ravasi, and D. A. Hume, Interferon-$\gamma$: an overview of signals, mechanisms and functions, J. Leukoc. Biol., 75, 163 (2004).
  6. A. Billiau, Interferon-$\gamma$: biology and role in pathogenesis. Adv. Immunol., 62, 61 (1996). https://doi.org/10.1016/S0065-2776(08)60428-9
  7. S. Gessani and F. Belardelli, IFN-$\gamma$ expression in macrophages and its possible biological significance, Cytokine Growth Factor Rev., 9, 117 (1998). https://doi.org/10.1016/S1359-6101(98)00007-0
  8. S. Goodbourn, L. Didcock, and R. E. Randall, Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures, J. Gen. Virol., 81, 2341 (2000). https://doi.org/10.1099/0022-1317-81-10-2341
  9. A. L. Zhang, L. P. Liu, M. Wang, and J. M. Gao, Bioactive ergosterol derivatives isolated from the fungus Lactarius hatsudake, Chem. Nat. Compd., 43, 637 (2007). https://doi.org/10.1007/s10600-007-0215-x
  10. J. M. Gao, M. Wang, L. P. Liu, G. H. Wei, A. L. Zhang, C. Draghici, and Y. Konishi, Ergosterol peroxides as phospholipase A2 inhibitors from the fungus Lactarius hatsudake, Phytomedicine, 14, 821 (2007). https://doi.org/10.1016/j.phymed.2006.12.006
  11. L. Z. Fang, W. Q. Yang, Z. J. Dong, H. J. Shao, and J. K. Liu, A new azulene pigment from the fruiting bodies of the Basidiomycete Lactarius hatsudake (Russulaceae). Acta Bot. Yunnan, 29, 122 (2007).
  12. L. Z. Fang, H. J. Shao, W. Q. Yang, and J. K. Liu, Two new azulene pigments from the fruiting bodies of the basidiomycete Lactarius hatsudake, Helv. Chim. Acta, 89, 1463 (2006). https://doi.org/10.1002/hlca.200690147
  13. S. K. Koul, S. C. Taneja, S. P. Ibraham, K. L. Dhar, and C. K. Atal, A C-formylated azulene from Lactarius deterrimus, Phytochemistry, 24, 181 (1985). https://doi.org/10.1016/S0031-9422(00)80834-1
  14. E. Heilbronner and R. W. Schmid, Sesquiterpenes and azulenes. CXIII. Azulene aldehydes and azulene ketones: the structure of lactaroviolin, Helv. Chim. Acta, 37, 2018 (1954). https://doi.org/10.1002/hlca.19540370715