Browse > Article
http://dx.doi.org/10.48022/mbl.2104.04014

Analysis of Tubulysin Biosynthetic Genes in Archangium gephyra  

Choi, Juo (Department of Biotechnology, Hoseo University, A)
Park, Taejoon (Department of Biotechnology, Hoseo University, A)
Kang, Daun (MECOX CureMed Co.)
Lee, Jeongju (MECOX CureMed Co.)
Kim, Yungpil (MECOX CureMed Co.)
Lee, Pilgoo (MECOX CureMed Co.)
Chung, Gregory J.Y. (MECOX CureMed Co.)
Cho, Kyungyun (Department of Biotechnology, Hoseo University, A)
Publication Information
Microbiology and Biotechnology Letters / v.49, no.3, 2021 , pp. 458-465 More about this Journal
Abstract
Tubulysins are a group of bioactive secondary metabolites from myxobacteria exhibiting strong anticancer activity against various cancer cell lines. In this study, we describe the identification of putative tubulysin biosynthetic gene clusters (tubA~tubF) in the genome sequences of two tubulysin-producing myxobacterial strains, Archangium gephyra MEHO_002 and MEHO_004. The inactivation of the putative tubulysin biosynthetic genes resulted in a tubulysin-production defect. The DNA sequences of the A. gephyra MEHO_002 and MEHO_004 tubulysin biosynthetic genes were 97% identical, and the amino acid sequences of the encoded proteins shared a similarity of 97-100%. The nucleotide sequences of the tubulysin biosynthetic gene clusters in MEHO_002 and MEHO_004 were 86% identical to that in Cystobacter sp. SBCb004 known as a tubulysin-producing myxobacterium, and the organization of the clusters was identical except for the lack of a tubZ gene in the clusters in MEHO_002 and MEHO_004. The amino acid sequences of the proteins encoded by each gene were 88-97% similar to those encoded by SBCb004, and the domain compositions of the proteins were also identical.
Keywords
Archangium gephyra; tubulysin; myxobacteria; secondary metabolite;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Risinger AL, Giles FJ, Mooberry SL. 2009. Microtubule dynamics as a target in oncology. Cancer Treat. Rev. 35: 255-261.   DOI
2 Sasse F, Steinmetz H, Heil J, Hofle G, Reichenbach H. 2000. Tubulysins, new cytostatic peptides from myxobacteria acting on microtubuli. Production, isolation, physico-chemical and biological properties. J. Antibiot. 53: 879-885.   DOI
3 Etienne-Manneville S. 2010. From signaling pathways to microtubule dynamics: the key players. Curr. Opin. Cell Biol. 22: 104-111.   DOI
4 Khalil MW, Sasse F, Lunsdorf H, Elnakady YA, Reichenbach H. 2006. Mechanism of action of tubulysin, an antimitotic peptide from myxobacteria. ChemBioChem 7: 678-683.   DOI
5 Reddy JA, Dorton R, Bloomfield A, Nelson M, Dircksen C, Vetzel M, et al. 2018. Pre-clinical evaluation of EC1456, a folate-tubulysin anti-cancer therapeutic. Sci. Rep. 8: 8943.   DOI
6 Shin H, Youn J, An D, Cho K. 2013. Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Kor. J. Microbiol. Biotechnol. 41: 44-51.   DOI
7 Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43: D222-D226.   DOI
8 Domling A, Richter W. 2005. Myxobacterial epothilones and tubulysins as promising anticancer agents. Mol. Divers. 9: 141-147.   DOI
9 Kaur G, Hollingshead M, Holbeck S, Schauer-Vukasinovic V, Camalier RF, Domling A, et al. 2006. Biological evaluation of tubulysin A: a potential anticancer and antiangiogenic natural product. Biochem. J. 396: 235-242.   DOI
10 Murray BC, Peterson MT, Fecik RA. 2015. Chemistry and biology of tubulysins: antimitotic tetrapeptides with activity against drug resistant cancers. Nat. Prod. Rep. 32: 654-662.   DOI
11 Chai Y, Pistorius D, Ullrich A, Weissman KJ, Kazmaier U, Muller R. 2010. Discovery of 23 natural tubulysins from Angiococcus disciformis An d48 and Cystobacter SBCb004. Chem. Biol. 17: 296-309.   DOI
12 Steinmetz H, Glaser N, Herdtweck E, Sasse F, Reichenbach H, Hofle G. 2004. Isolation, crystal and solution structure determination, and biosynthesis of tubulysins - powerful inhibitors of tubulin polymerization from myxobacteria. Angew. Chem. Int. Ed. 43: 4888-4892.   DOI
13 Hyun H, Choi J, Kang D, Kim Y, Lee P, Chung GJY, et al. 2021. Screening of myxobacteria carrying tubulysin biosynthetic genes. Microbiol. Biotechnol. Lett. 49: 32-38.   DOI
14 Szigetvari NM, Dhawan D, Ramos-Vara JA, Leamon CP, Klein PJ, Ruple AA, et al. 2018. Phase I/II clinical trial of the targeted chemotherapeutic drug, folate-tubulysin, in dogs with naturally-occurring invasive urothelial carcinoma. Oncotarget 9: 37042-37053.   DOI
15 Courter JR, Joseph Z, Hamilton JZ, Hendrick NR, Zaval M, Waight AB, et al. 2020. Structure-activity relationships of tubulysin analogues. Bioorg. Med. Chem. Lett. 30: 127241.   DOI
16 Sandmann A, Sasse F, Muller R. 2004. Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. Chem. Biol. 11: 1071-1079.   DOI
17 Lee B, Lee C, Cho K. 2003. Isolation of dispersed mutants from wild myxobacteria. Kor. J. Microbiol. Biotechnol. 31: 342-347.
18 Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y., USA.
19 Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47: W81-W87.   DOI
20 Sasse F, Steinmetz H, Schupp T, Petersen F, Memmert K, Hofmann H, et al. 2002. Argyrins, immunosuppressive cyclic peptides from myxobacteria. I. Production, isolation, physicochemical and biological properties. J. Antibiot. 55: 543-551.   DOI
21 Ullrich A, Chai Y, Pistorius D, Elnakady YA, Herrmann JE, Weissman KJ, et al. 2009. Pretubulysin, a potent and chemically accessible tubulysin precursor from Angiococcus disciformis. Angew. Chem. Int. Ed. Engl. 48: 4422-4425.   DOI
22 Johnson M, Zaretskaya I, Raytselis Y, Mereshuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res. 36: W5-W9.   DOI
23 Shimkets LJ. 1986. Correlation of energy-dependent cell cohesion with social motility in Myxococcus xanthus. J. Bacteriol. 166: 837-841.   DOI
24 Chai Y, Shan S, Weissman KJ, Hu S, Zhang Y, Muller R. 2012. Heterologous expression and genetic engineering of the tubulysin biosynthetic gene cluster using Red/ET recombineering and inactivation mutagenesis. Chem. Biol. 19: 361-371.   DOI
25 Selva E, Gastaldo L, Saddler GS, Toppo G, Ferrari P, Carniti G, et al. 1996. Antibiotics A21459 A and B, new inhibitors of bacterial protein synthesis. I. Taxonomy, isolation and characterization. J. Antibiot. 49: 145-149.   DOI