Browse > Article
http://dx.doi.org/10.12791/KSBEC.2022.31.4.319

Increased Antioxidants of Agastache rugosa by the Night Interruption Time  

Kim, Sungjin (Department of Horticultural Science, Chungnam National University)
Noh, Seungwon (Department of Bio-AI Convergence, Chungnam National University)
Park, Jongseok (Department of Horticultural Science, Chungnam National University)
Publication Information
Journal of Bio-Environment Control / v.31, no.4, 2022 , pp. 319-324 More about this Journal
Abstract
The objective of this study was to determine the proper night interruption of photoperiods and dark periods for accumulating bioactive compounds of Agastache rugosa without decreasing plant growth. Five-week-old seedlings were transplanted in a DFT system with white LEDs. A. rugosa was treated with night interruption time treatments of 18:1:2:3, 18:2:2:2, 18:3:2:1 (light:dark:light:dark), and 20:4 (control) for 4 weeks. There were no significant differences except for leaf length, leaf width, and the number of flowers. The content of antioxidants in the shoot of A. rugosa was high in tilianin and acacetin, and the content of rosmarinic acid (RA) was significantly higher in the underground part. The RA content per dry weight of A. rugosa was 47.92 and 51.46% higher than that of the control in 18:1:2:3 and 18:2:2:2, and tilianin and acactin per dry weight were significantly higher in 18:3:2:1. There was no significant difference in growth due to the same day light integral, but 18:2:2:2 showed high total polyphenol contents. Therefore, it is thought that the effect of increasing secondary metabolites of A. rugosa without degradation of growth can be expected through night interruption treatment in plant factory cultivation systems using artificial light.
Keywords
acacetin; Agastache rugosa; night interruption; rosmarinic acid; tilianin;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Trouwborst G., J. Oosterkamp, S.W. Hogewoning, J. Harbinson, and W. Van Ieperen 2010, The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Physiol Plant 138:289-300. doi:10.1111/j.1399-3054.2009.01333.x   DOI
2 Kim S.H., and J.H. Lieth 2003, A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.). Ann Bot 91:771-781. doi:10.1093/aob/mcg080   DOI
3 Hong Y.Y., Y.J. Park, Y.J. Kim, and K.S. Kim 2014, Vegetative growth and flowering of Salvia splendens 'Salsa' in response to night interruption. Hortic Sci Technol 32:434-439. (in Korean) doi:10.7235/hort.2014.13176   DOI
4 Jung D.H., H.I. Yoon, and J.E. Son 2017, Development of a three-variable canopy photosynthetic rate model of romaine lettuce (Lactuca sativa L.) grown in plant factory modules using light intensity, temperature, and growth stage. Protected Hort Plant Fac 26:268-275. (in Korean) doi:10.12791/KSBEC.2017.26.4.268   DOI
5 Kim S.J., G.J. Bok, and J.S. Park 2018, Analysis of antioxidant content and growth of Agastache rugosa as affected by LED light qualities. Protected Hort Plant Fac 27:260-268. (in Korean) doi:10.12791/KSBEC.2018.27.3.260   DOI
6 Kim Y.J., D.J. Yu, H. Rho, E.S. Runkle, H.J. Lee, and K.S. Kim 2015a, Photosynthetic changes in Cymbidium orchids grown under different intensities of night interruption lighting. Sci Hortic 186:124-128. doi:10.1016/j.scienta.2015.01.036   DOI
7 An J.U., K.H. Joung, H.S. Yoon, Y.H. Hwang, and G.P. Hong 2017, Effects of photo/dark period and relative humidity during dark period on growth and tipburn occurrence of water dropwort (Oenanthe stolonifera DC.) in a closed-type plant factory. Protected Hort Plant Fac 26:146-150. (in Korean) doi:/10.12791/KSBEC.2017.26.2.146   DOI
8 Tuan P.A., W.T. Park, H. Xu, N.I. Park, and S.U. Park 2012, Accumulation of tilianin and rosmarinic acid and expression of phenylpropanoid biosynthetic genes in Agastache rugosa. J Agric Food Chem 60:5945-5951. doi:10.1021/jf300833m   DOI
9 Yadav V., Z. Wang, C. Wei, A. Amo, B. Ahmed, X. Yang, and X. Zhang 2020, Phenylpropanoid pathway engineering: An emerging approach towards plant defense. Pathogens 9:312. doi:10.3390/pathogens9040312   DOI
10 Zielinska S., and A. Matkowski 2014, Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem Rev 13:391-416. doi:10.1007/s11101-014-9349-1   DOI
11 Dixon R.A., L. Achnine, P. Kota, C.J. Liu, M.S.S. Reddy, and L. Wang 2002, The phenylpropanoid pathway and plant defence a genomics perspective. Mol Plant Pathol 3:371-390. doi:10.1046/j.1364-3703.2002.00131.x   DOI
12 Lam V.P., S.J. Kim, H.J. Lee, and J.S. Park 2019, Root pruning increased bioactive compounds of hydroponically-grown Agastache rugosa in a greenhouse. Hortic Environ Biotechnol 60:647-657. doi:10.1007/s13580-019-00163-3   DOI
13 Wang K.C., J.S. Chang, L.C. Chiang, and C.C. Lin 2009, 4-Methoxycinnamaldehyde inhibited human respiratory syncytial virus in a human larynx carcinoma cell line. Phytomedicine 16:882-886. doi:10.1016/j.phymed.2009.02.016   DOI
14 Yeo H.J., C.H. Park, Y.E. Park, H. Hyeon, J.K. Kim, S.Y. Lee, and S.U. Park 2021, Metabolic profiling and antioxidant activity during flower development in Agastache rugosa. Physiol Mol Biol Plants 27:445-455. doi:10.1007/s12298-021-00945-z   DOI
15 Rao S.R., and G.A. Ravishankar 2002, Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101-153. doi:10.1016/s0734-9750(02)00007-1   DOI
16 Kim Y.J., T.K.L. Nguyen, and M.M. Oh 2020, Growth and ginsenosides content of ginseng sprouts according to LEDbased light quality changes. Agronomy 10:1979. doi:10.3390/agronomy10121979   DOI
17 Kozai T. 2018, Smart Plant Factory: The Next Generation Indoor Vertical Farms, 1st ed. Springer, Berlin/Heidelberg, Germany, pp 3-14.
18 Kwon D.Y., Y.B. Kim, J.K. Kim, and S.U. Park 2021, Production of rosmarinic acid and correlated gene expression in hairy root cultures of green and purple basil (Ocimum basilicum L.). Prep Biochem Biotechnol 51:35-43. doi:10.1080/10826068.2020.1789990   DOI
19 Kwon Y.S., S.Y. Choi, M.J. Kil, B.S. You, J.A. Jung, and S.K. Park 2013, Effect of night break treatment using red LED (660 nm) on flower bud initiation and growth characteristics of chrysanthemum cv.'Baekma', and cv.'Jinba'. CNU J Agric Sci 40:297-303. (in Korean) doi:10.7744/cnujas.2013.40.4.297   DOI
20 Miyazawa Y., S. Hikosaka, E. Goto, and T. Aoki 2008, Effects of light conditions and air temperature on the growth of everbearing strawberry during the vegetative stage. Acta Hortic 842:817-820. doi:10.17660/ActaHortic.2009.842.180   DOI
21 Oh D.G., M.K. Cha, and Y.Y. Cho 2017, Composition and EC of nutrient solution on growth and quality of carrot (Daucus carrota L.) in hydroponics. Protected Hort Plant Fac 26: 340-345. (in Korean) doi:10.12791/KSBEC.2017.26.4.340   DOI
22 Sul S.G., Y.T. Baek, and Y.Y. Cho 2022, Effects of light intensity, light quality and photoperiod for growth of perilla in a closed-type plant factory system. J Bio-Env Con 31:180-187. (in Korean) doi:10.12791/KSBEC.2022.31.3.180   DOI
23 Dou H., G. Niu, M. Gu, and J.G. Masabni 2018, Responses of sweet basil to different daily light integrals in photosynthesis, morphology, yield, and nutritional quality. HortScience 53: 496-503. doi:10.21273/HORTSCI12785-17   DOI
24 Park Y.J., Y.J. Kim, and K.S. Kim 2013, Vegetative growth and flowering of Dianthus, Zinnia, and Pelargonium as affected by night interruption at different timings. Hortic Environ Biotechnol 54:236-242. doi:10.1007/s13580-013-0012-3   DOI
25 Petersen M. 1997, Cytochrome P450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 45:1165-1172. doi:10.1016/S0031-9422(97)00135-0   DOI
26 Engelsma G. 1978, Phenol synthesis and photomorphogenesis. Philips tech Rev 38:89-100.
27 Han D.S., Y.C. Kim, S.E. Kim, H.S. Ju and S.J Byun 1987, Studies on the diterpene constituent of the root of Agastache rugosa O. Kuntze. J Pharmacogn 18:99-102. (in Korean)
28 Hwang H.S, H.W. Jeong, and S.J. Hwang 2022, Flowering and inflorescence development characteristics of Korean mint affected by photoperiod. J Bio-Env Con 31:188-193. doi: 10.12791/KSBEC.2022.31.3.188   DOI
29 Cha M.K., J.S. Kim, J.H. Shin, J.E. Son, and Y.Y. Cho 2014, Practical design of an artificial light-used plant factory for common ice plant (Mesembryanthemum crystallinum L.). Protected Hort Plant Fac 23:371-375. (in Korean) doi:10.12791/KSBEC.2014.23.4.371   DOI
30 Do J.W., S.W. Noh, G.J. Bok, H.J. Lee, J.W. Lee, and J.S. Park 2020, Selection of optimal varieties suitable for indoor cultivation considering the growth and functional content of Agastache species. Protected Hort Plant Fac 29:202-208. (in Korean) doi:10.12791/KSBEC.2020.29.2.202   DOI
31 Engelsma G. 1979, Effect of daylength on phenol metabolism in the leaves of Salvia occidentalis. Plant Physiol 63:765-768. doi:10.1104/pp.63.4.765   DOI
32 Kim Y.J., Y.J. Park, and K.S. Kim 2015b, Night interruption promotes flowering and improves flower quality in Doritaenopsis orchid. Flower Res J 23:6-10. doi:10.11623/frj.2015.23.1.3   DOI
33 Thomas B., and D. Vince-Prue 1997, Photoperiodism in plants. Academic Press, CA, USA.
34 Runkle E.S., and R.D. Heins 2006, Manipulating the light environment to control flowering and morphogenesis of herbaceous plants. Acta Hortic 711:51-60. doi:10.17660/ActaHortic.2006.711.4   DOI
35 Shin S. 2004, Essential oil compounds from Agastache rugosa as antifungal agents against Trichophyton species. Arch Pharm Res 27:295-299. doi:10.1007/Bf02980063   DOI
36 Sugumaran K.R., R.V. Sindhu, S. Sukanya, N. Aiswarya, and V. Ponnusami 2013, Statistical studies on high molecular weight pullulan production in solid state fermentation using jack fruit seed. Carbohydr Polym 98:854-860. doi:10.1016/j.carbpol.2013.06.071   DOI