• 제목/요약/키워드: bioaccumulation rate

검색결과 33건 처리시간 0.026초

구리(Cu) 노출에 따른 전복, Haliotis discus hannai의 생체축적 및 성장의 변화 (Bioaccumulation and growth change in the abalone Haliotis discus hannai exposed to copper)

  • 박희주;강주찬
    • 한국어병학회지
    • /
    • 제25권2호
    • /
    • pp.103-109
    • /
    • 2012
  • The objective of this study was to investigate the effects of exposured $Cu^{2+}$ on growth and bioaccumulation of abalone Haliotis discus hannai. Abalone were exposed to various concentration of $Cu^{2+}$ (0, 5, 10, 20, $40{\mu}g/L$). Bioaccumulation of tissues, hepatopancreas, muscles and gills were measured. hepatopancreas and gills $Cu^{2+}$ concentration of abalone increases to extent during the 4 weeks accumulation time. But muscles showed no significant changes, with respect to control. These data indicate that abalone Haliotis discus hannai hepatopancreas and gills can be considered adequate target tissues for waterborne exposured of $Cu^{2+}$. Weight growth rate of abalone exposed to $Cu^{2+}$ was significantly decreased in 20 and $40{\mu}g/L$ groups compared to control. This study revealed that high $Cu^{2+}$ concentration (${\geq}20{\mu}g/{\ell}$) reduced growth of abalone. These data indicate that excessive waterborne $Cu^{2+}$ can affect the toxicity of xenbiotics to abalone through alterations in growth rate. Thus, environmental standard of $Cu^{2+}$ $20{\mu}g/L$, should be considered a potential source of variation in toxicological studies with abalone.

카드뮴과 수은 폭로시 참게(mitten crab, Eriocheir sinensis) 유생의 사망률과 생물농축 (Death Rate and Bioaccumulation on the Early Development of Mitten Crab by Treatment of Cadmium and Mercury)

  • 이복규;허만규
    • 환경생물
    • /
    • 제22권3호
    • /
    • pp.369-375
    • /
    • 2004
  • 참게(E. sinensis)의 유생 생장에 미치는 기초적인 환경 및 생물학적 정보를 얻기 위해 본 실험을 실시하였다. 참게 유생을 카드뮴과 수은의 0.1, 0.2, 0.3 ppm농도에 처리하였다. 참게의 생존율과 카드뮴과 수은의 중금속 농도와 양의 상관을 나타내었다. 그런데 96시간 사육시 카드뮴과 수은의 반수치사농도는 유생 단계간 유의한 차이를 나타내었다. 반수치사농도는 카드뮴이 수은보다 높았으므로 수은이 더 치명적이였다. 중금속의 축적은 카드뮴과 수은 모두 메가로파 시기부터 급격히 증가하였다. 따라서 참게의 유생의 생육에서 카드뮴과 수은은 참게 유생의 생존에 치명적이며 생물농축이 일어났다.

Ag과 Cu로 오염된 퇴적물이 이매패류 Macoma balthica의 체내 금속축적과 만성독성에 미치는 영향 (Influence of Ag and Cu Contaminated Sediments on the Bioaccumulation and Chronic Toxicity to the Clam Macoma balthica)

  • 유훈;이인태;이병권
    • 환경생물
    • /
    • 제20권2호
    • /
    • pp.136-145
    • /
    • 2002
  • Ag와 Cu로 오염된 퇴적물이 이매패류 Macoma balthica에 미치는 만성독성영향과 주요한 중금속 흡수경로를 평가하기 위해, 실험실에서 미소생태계 실험이 수행되었다. 실험생물인 M. balthica는 4개의 농도구배를 갖는 $Ag(0.01-0.87\mu{mol}\;g^{-1})$$Cu(0.75-5.55\mu{mol\;g^{-1})$로 오염된 퇴적물에서 90일 동안 배양되었다. 퇴적물 내 중금속의 지화학적 분포 특성과 생물이용도를 조절한다고 알려진 AVS(acid volatile sulfide)의 농도를 변화시켜, AVS가 M. balthica의 Ag와 Cu의 체내축적에 미치는 영향을 평가하였다. 90일간 노출된 후, M. balthica가 축적한 Ag와 Cu의 농도는 1 N HCI로 추출된 퇴적물 내 중금속의 농도(SEM, simultaneously extracted metal)와 양의 상관성을 보이며 증가하였다. Ag와 Cu의 체내 축적은 [SEM]-[AVS]값에 큰 영향을 받지 않았는데, 이것은 공극수 내 용존태로 존재하는 Ag와 Cu가 생물 체내 축적에 크게 기여하지 않았다는 것을 암시한다. 체내 축적된 Ag와 Cu는 M. balthica의 여수율과 글리코겐 함량에 직접적인 영향을 미쳤다. 최대 $1.0\pm{0.2}\mu{mol}\;Ag\;g^{-1}$$2.7\pm{0.3}\mu{mol}\;Cu\;g^{-1}$를 축적한 M. balthica의 여수율은 오염되지 않은 퇴적물에 노출된 실험조개의 18-43%에 불과하였다. 이와 유사하게, 중금속 처리군에 노출된 M. balthica의 글리코겐 함량은 체내 Ag와 Cu의 농도와 음의 상관성을 나타내었다. 본 연구의 결과는 Ag와 Cu로 오염된 퇴적물에 노출된 M. balthica는 주로 퇴적물의 섭식을 통해 중금속을 축적하며, 여수율과 글리코겐 함량의 감소와 같은 만성독성영향을 나타낼 수 있다는 것을 암시한다.

재조합 Escherichia coli를 이용한 수용액상에서의 Cadmium의 선택적 제거

  • 김세권;김은기
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.183-186
    • /
    • 2000
  • Recombinant E. coli JM109(pZH3-5/pMT) harboring manganese transport gene(mntA) and metal sequestering protein, metallothionein(MT), was cultivated to accumulate cadmium in aqueous phase. Bioaccumulation followed Michaelis-Menten type kinetics. Equilibrium isotherm showed Langmuir type isotherm. IPTG induction cell showed fast $Cd^{2+}$ uptake and had higher uptake rate than wild type and no-induced cell. The optimum pH and temperature for $Cd^{2+}$ uptake was 7 and $37^{\circ}C$, respectively. Manganese (0.01M) inhibited the $Cd^{2+}$ accumulation. However, $Cu^{2+}$, $Zn^{2+}$ and $Pb^{2+}$ did not affect the $Cd^{2+}$ bioaccumulation.

  • PDF

Bioconcentration of Pirimiphos-methyl in Killifish (Oryzias latipes)

  • Seo, Jong-Su;Chang, Hee-Ra;Hamer, Mick;Kim, Kyun
    • 한국환경농학회지
    • /
    • 제28권4호
    • /
    • pp.453-461
    • /
    • 2009
  • Killifish (Oryzias latipes) were exposed to an organophosphate pesticide, pirimiphos-methyl, in a flow-through system to determine the bioconcentration factor (BCF) following GLP (Good Laboratory Practice). This study was conducted at two different concentrations (1 and $10\;{\mu}$g/L) of $^{14}C$-labeled pirimiphos-methyl for 28 days uptake and 14 days depuration according to the OECD 305 test guideline. The $BCF_{ss}$ for total radioactive residues in whole fish were 1,251 and 1,277 for low and high concentrations, respectively. The $BCF_k$ based on the uptake and depuration rate constants were 1,200 for both low and high concentrations. During the depuration phase, the accumulated test substance was rapidly depurated from fish. Greater than 95% of the residue at steady-state was depurated after 2 days. Although the measured BCF values were high, pirimiphos-methyl could be evaluated as a low risk from bioaccumulation by aquatic organisms due to the short depuration period and low amount of bound residue (1.5%). We suggest that in evaluating bioaccumulation, not only the BCF should be considered, but also depuration time and bound residue in aquatic organisms give an indication of the potential environmental risks.

Effects of Salinity, Temperature and Food Type on the Uptake and Elimination Rates of Cd, Cr, and Zn in the Asiatic Clam Corbicula fluminea

  • Lee, Jung-Suk;Lee, Byeong-Gweon
    • Ocean Science Journal
    • /
    • 제40권2호
    • /
    • pp.79-89
    • /
    • 2005
  • Laboratory radiotracer experiments were conducted to determine assimilation efficiencies (AE) from ingested algal food and oxic sediment particles, uptake rates from the dissolved phase, and the efflux rates of Cd, Cr and Zn in the Asiatic clam Corbicula fluminea. Among three elements, AE from both algal and sediment food was greatest for Cd, followed by Zn and Cr. The AEs of tested elements from algal food (Phaeodactylum tricornutum) were consistently higher than those from sediments at a given salinity and temperature. The influence of salinity (0, 4 and 8 psu) and temperature (5, 13 and $21^{\circ}C$) on the metal AEs was not evident for most tested elements, except Cd AEs from sediment. The rate constant of metal uptake from the dissolved phase $(k_u)$ was greatest for Cd, followed by Zn and Cr in freshwater media. However, in saline water, the $(k_u)$ of Zn were greater than those of Cd. The influx rate of all tested metals increased with temperature. The efflux rate constant was greatest for Cr $(0.02\;d^{-1})$, followed by Zn $(0.010{\sim}0.017\;d^{-1})$ and $Cd\;(0.006\;d^{-1})$. The efflux rate constant for Zn in clam tissues depurated in 0 psu $(0.017\;d^{-1})$ was faster than that in 8 psu $(0.010\;d^{-1})$. Overall results showed that the variation of salinity and temperature in estuarine systems can considerably influence the metal bioaccumulation potential in the estuarine clam C. fluminea. The relatively high Cd accumulation capacity of C. fluminea characterized by the high AE, high dissolved influx rate and low efflux rate, suggested that this clam species can be used as an efficient biomonitor for the Cd contamination in freshwater and estuarine environments.

Cd, Ni, Zn로 오염된 퇴적물에 노출된 Neanthes arenaceodentata의 금속 생물축적, 사망 및 성장저해에 대한 Acid Volatile Sulfide(AVS) 영향 (The Influence of Acid Volatile Sulfide (AVS) on the Bioavailabiltiy and Toxicity of Cd, Ni, and Zn in Sediments to Marine Polychaete Neanthes Arenaceodentata)

  • 이종현;고철환
    • 한국해양학회지:바다
    • /
    • 제7권4호
    • /
    • pp.226-234
    • /
    • 2002
  • 퇴적물 내 황화물(acid volatile sulfide, AVS)이 저서 생물의 금속 생물 축적 및 독성 반응에 어떠한 영향을 미치는 지를 이해하기 위해서 해양 다모류인 Neanthes arenaceodentata를 이용한 퇴적물 노출실험을 수행하였다. 이를 위해서 세 개의 다른 AVS 농도군에 대조구를 포함한 다섯 개의 농도 구배로 Cd, Ni, Zn를 오염시킨 퇴적물에서 N. arenaceodentata를 20일간 배양한 후 실험생물의 체내 금속 축적량과 그에 따른 사망률 및 성장률을 조사하였다. N. arenaceodentata에 의한 금속의 생물축적은 Cd과 Zn의 경우 AVS 농도의 영향을 받아서 해수(overlying water, OW)내 용존 금속 농도에 비례해서 증가했다. Ni은 AVS농도에 영향을 받지 않고 퇴적물 내 금속(simultaneously extracted metals. SEM)농도에 비례해서 증가했다. N. arenaceodentata의 사망과 성장률 저해현상은 SEM과 AVS 간의 몰농도차가 영보다 큰 조건([SEM-AVS]>0)에서만 관찰되었는데 용존 Zn에 의한 결과로 추정되었다. OW-Zn의 20-d LC50값은 9.3(8.0$\pm$11.0) $\mu$M이었다. 사망률에 대한 체내 Zn 농도의 최소영향농도(LOEC)는 7.8 $\mu$mol/g이었고, 최대무영향농도(NOEC)는 6.2$\mu$mol/g이었다. 성장률 저해에 대한 체내 Zn 농도의 LOEC는 5.9$\mu$mol/g이었고, NOEC은5.1 $\mu$mol/g토이었다. 본 실험에서는 실험실 조건에서 인위적으로 오염시킨 퇴적물 내 Zn의 입자상 Zn 농도와 용존 Zn농도의 비 (K$_{d}$ )가 현장 퇴적물에 비해서 10배 정도 감소함으로써 결국 용존 Zn에 의한 독성이 과대평가된 것으로 보인다.

아연의 체내축적이 대복의 생존, 운동성, 성장 및 기관계 구조에 미치는 영향 (Effect of Zinc Bioaccumulation on Survival Rate, Activity, Growth and Organ Structure of the Equilateral Venus, Gomphina veneriformis (Bivalvia: Veneridae))

  • 주선미;이재우;진영국;유준;이정식
    • Environmental Analysis Health and Toxicology
    • /
    • 제21권2호
    • /
    • pp.115-126
    • /
    • 2006
  • This study was conducted to find out survival rate, activity, growth and change of the organ structure of bivalves exposed to heavy metal. The results of the study confirmed that zinc (Zn) induces reduction of survival rate and activity, abnormality of organ structure of the equilateral venus, Gomphina veneriformis. Experimental groups were composed of one control condition and three Zn exposure conditions ($0.64mg\;Zn{\iota}^{1},\;1.07mg\;Zn{\iota}^{-1},\;1.79mg\;Zn{\iota}^{-1}$). As the concentration of zinc increased the accumulation of lipofucin increased in the digestive gland. Survival rate was the lowest in the lowest Zn exposure group at $0.64mg;Zn{\iota}^{-1}$. Growth was not significantly different between the control and exposure group. Activity. with the exception of the lowest Zn exposure group at $0.64mg\;Zn{\iota}^{-1}$, was similar between the control and exposure group. Histological analysis of organ system illustrated expansion of hemolymph sinus, loss of striated border of inner epidermis, increase in the number of mucous cell in the mantle. Also, histological degenerations as epithelial necrosis and hyperplasia of mucous cells are recognized in the gill and foot.

Bioaccumulation of Chromium Ions by Immobilized Cells of a Filamentous Cyanobacterium, Anabaena variabilis

  • Khattar, Jasvir I.S.;Sarma, Tangirala-A.;Singh, Davinder-P.;Sharma, Anuradha
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.137-141
    • /
    • 2002
  • Anabaena variabilis ATCC 29413 grew in chromium (Cr) containing Chu-10 (basal) and nitrate-supplemented media, and the growth of the organism in $100{\mu}M$ chromium was found to be 50% of that in control medium. The growth in nitrate $({NO_3}^-)$ supplemented cultures was better as compared to cultures grown in basal medium. Free cells from basal and nitrate-supplemented media removed 5.2 and 7.4 nmol of chromium $mg^{-1}$protein in 8 h, respectively, from the medium containing $30{\mu}M$ chromium. The efficiency of chromium removal increased 7-fold in imidazole buffer (0.2 M, pH 7.0). A cell density equivalent to $100{\mu}g$ protein $ml^{-1}$ was found to be optimum for maximum Cr removal. Entrapment of cells in calcium-alginate beads did not affect the rate of Cr uptake by the cells. The efficiency of the laboratory-scale continuous flow bioreactor $(12.5{\times}2cm)$ loaded with alginate-immobilized cells (10 mg protein) and fed with $30{\mu}M$ chromium solution was compared at different flow rates. The efficiency of the bioreactor varied with flow rates. In terms of percent removal of Cr from influent, a flow rate of 0.1 ml $min^{-1}$ was found to be optimum for 6 h (54% Cr removal efficiency). Maximum amount of Cr (883 nmol) was removed by the cells in 3 h at a flow rate of 0.5 ml $min^{-1}$. The potential use of A. variabilis in removing Cr from industrial effluents is discussed.

토양 내 서식하는 공벌레의 중금속 축적에 따른 생태적 연구 (Ecological study on effects of heavy metal accumulation on pillbugs)

  • 이상돈
    • 환경영향평가
    • /
    • 제20권5호
    • /
    • pp.675-684
    • /
    • 2011
  • In nature, the overall effect of heavy metals on the biota can be influenced by a number of environmental factors like soil characteristics and air pollution by elevated $CO_2$. Pillbugs (Isopoda, Armadillium vulgare) take up heavy metals with their food and store them mainly in the vesicles of hepatopancreas. They accumulate certain metals, occur in relatively large numbers, are easily collected and identified, and provide sufficient material for analysis. The species are decomposing litter well and soil impurities into N and P. Therefore, it has been suggested that total body concentration of metals in pillbugs could be positively correlated to the levels of environmental exposure and that pillbugs could be used as biological indicators of metal pollution and global change by $CO_2$. The aim of the study is to determine effects of heavy metal concentrations in soil and elevated $CO_2$ on pillbugs' body accumulation of heavy metal and growth rate. In this study, the concentrations of six metals (Fe, Mg Cu, Zn, Pb, Cd) have been determined. Pillbugs (N=287) were collected at five sites during Jul-Aug, 2006. Cu and Zn concentrations in the body were much higher than in the soils(1.39-41.70 times). This indicated that bioaccumulation of some of the heavy metals were increasing in the food-chain. The high bioconcentration of lead in Sangam may be partly associated with reclaimed land uses.