Influence of Ag and Cu Contaminated Sediments on the Bioaccumulation and Chronic Toxicity to the Clam Macoma balthica

Ag과 Cu로 오염된 퇴적물이 이매패류 Macoma balthica의 체내 금속축적과 만성독성에 미치는 영향

  • Yoo, Hoon (Department of Oceanography, Chonnam National University) ;
  • Lee, In-Tae (Department of Oceanography, Chonnam National University) ;
  • Lee, Byeong-Gweon (Department of Oceanography, Chonnam National University)
  • 유훈 (전남대학교 해양학과) ;
  • 이인태 (전남대학교 해양학과) ;
  • 이병권 (전남대학교 해양학과)
  • Published : 2002.06.01

Abstract

A laboratory microcosm experiment was conducted to evaluate a major metal uptake route as well as chronic toxic effects of the clam, Macoma balthica exposed to Ag and Cu contaminated sediments. Twenty five clams were exposed to the sediments contaminated with four levels of Ag $Ag(0.01-0.87\mu{mol}\;g^{-1})$ and $Cu(0.75-5.55\mu{mol\;g^{-1})$ for 90 days. AVS (acid volatile sulfide) concentration in the sediments, considered as major factor controlling metal geochemistry and bioavailability, was manipulated to evaluate its effects on Ag and Cu bioaccumulation in M. balthica. Following 90-d exposure, the tissue Ag and Cu in M. balthica increased linearly with the Ag and Cu concentrations in sediments extracted with 1 N HCI (SEM, simultaneously extracted metals with AVS). The bioaccumulation of Ag and Cu in M. balthica was little influenced by difference in [SEM] - [AVS] values, suggesting a minor contribution of pore water metals to bioaccumulation. Tissue Ag and Cu concentrations directly influenced on the clearance rate and glycogen content of the clams. The clams with highest tissue Ag $(1.0\pm{0.2}\mu{mol}\;g^{-1})$ and Cu concentrations $(2.7\pm{0.3}\;\mu{mol}\;g^{-1})$ had only 18-43% of clearance of the clams exposed to uncontaminated sediments. Similarly, glycogen content of the exposed clams had a inverse relationship with tissue Ag and Cu concentrations. These results suggest that M. balthica exposed to Ag and Cu contaminated sediments accumulates metals largely by ingestion of contaminated sediments and can display chronic effects as reduced clearance rate and glycogen content.

Ag와 Cu로 오염된 퇴적물이 이매패류 Macoma balthica에 미치는 만성독성영향과 주요한 중금속 흡수경로를 평가하기 위해, 실험실에서 미소생태계 실험이 수행되었다. 실험생물인 M. balthica는 4개의 농도구배를 갖는 $Ag(0.01-0.87\mu{mol}\;g^{-1})$$Cu(0.75-5.55\mu{mol\;g^{-1})$로 오염된 퇴적물에서 90일 동안 배양되었다. 퇴적물 내 중금속의 지화학적 분포 특성과 생물이용도를 조절한다고 알려진 AVS(acid volatile sulfide)의 농도를 변화시켜, AVS가 M. balthica의 Ag와 Cu의 체내축적에 미치는 영향을 평가하였다. 90일간 노출된 후, M. balthica가 축적한 Ag와 Cu의 농도는 1 N HCI로 추출된 퇴적물 내 중금속의 농도(SEM, simultaneously extracted metal)와 양의 상관성을 보이며 증가하였다. Ag와 Cu의 체내 축적은 [SEM]-[AVS]값에 큰 영향을 받지 않았는데, 이것은 공극수 내 용존태로 존재하는 Ag와 Cu가 생물 체내 축적에 크게 기여하지 않았다는 것을 암시한다. 체내 축적된 Ag와 Cu는 M. balthica의 여수율과 글리코겐 함량에 직접적인 영향을 미쳤다. 최대 $1.0\pm{0.2}\mu{mol}\;Ag\;g^{-1}$$2.7\pm{0.3}\mu{mol}\;Cu\;g^{-1}$를 축적한 M. balthica의 여수율은 오염되지 않은 퇴적물에 노출된 실험조개의 18-43%에 불과하였다. 이와 유사하게, 중금속 처리군에 노출된 M. balthica의 글리코겐 함량은 체내 Ag와 Cu의 농도와 음의 상관성을 나타내었다. 본 연구의 결과는 Ag와 Cu로 오염된 퇴적물에 노출된 M. balthica는 주로 퇴적물의 섭식을 통해 중금속을 축적하며, 여수율과 글리코겐 함량의 감소와 같은 만성독성영향을 나타낼 수 있다는 것을 암시한다.

Keywords

References

  1. Environ. Sci. Technol. v.31 U.S. Mussel watch dta from 1986 to 1994: Temporal trend detection at large spatial scales Beliaeff B;TP O'Connor;DK Daskalakis;PJ Smith https://doi.org/10.1021/es9606586
  2. Environ. Toxicol. Chem. v.18 Predicting toxicity of sediments spiked with silver Berry WJ;MG Cantwell;PA Edward;JR Serbst;DJ Hansen https://doi.org/10.1897/1551-5028(1999)018<0040:PTOSSW>2.3.CO;2
  3. Research Report. U.S. Environmental Protection Agency Vertical and seasonal variability of acid volatile sulfides in marine sediments Boothman WS;A Helmstetter
  4. Mar. Biol. v.16 The effect of copper and zinc on the metabolism of the mussel Mytilus edulis Brown BE;RC Newell
  5. Mar. Ecol. Prog. Ser. v.124 Use of the euryhaline bivalve Potamocorbula amrensis as a biosentinel species to assess trace metal contamination in San Francisco Bay Brown CL;SN Luoma
  6. Mar. Environ. Res. v.15 Copper and silver accumulation in transplanted and resident clams (Macoma Balthica) in South San Francisco Bay Cain DJ;SN Luoma
  7. Mar. Pollut. Bull. v.31 Ecotoxicology and pollution-key issues Chapman PM https://doi.org/10.1016/0025-326X(95)00101-R
  8. Mar. Biol. v.2 The estimation of filtering rate from the clearance of suspensions Coughlan J https://doi.org/10.1007/BF00355716
  9. Environ. Sci. Technol. v.26 Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments Di Toro DM;JD Mahony;DJ Hansen;KJ Scott;AR Carson;GT Ankely https://doi.org/10.1021/es00025a009
  10. Proceedings: Fifth International Conference on the Transport, Fate, and Effects of Silver in the Environment Silver accumulation and toxicity in marine and fresh-water zooplankton Fisher NS;SE Hook
  11. Est. Coast. Shelf. Sci. v.16 U.S. Mussel Watch: 1977-1978 result on trace metals and radionuclides Goldberg ED;M Koide;V Hodge;AR Flegal;J Martin https://doi.org/10.1016/0272-7714(83)90095-1
  12. J. Mar. Res. v.60 Effects of gut chemistry in marine bivalves on the assimilation of metals from ingested sediment particles Griscom SB;NS Fisher;RC Aller;BG Lee https://doi.org/10.1357/002224002762341267
  13. Environ. Toxicol. Chem. v.15 Chronic effect of cadmium in sediments on colonization by benthic marine organisms: an evaluation of the role of interstitial cadmium and acid-volatile sulfide in biological availability Hansen DJ;JD Mahony;WJ Berry;SJ Benyi;JM Corbin;SD Prarr;DM Di Toro;MB Abel https://doi.org/10.1897/1551-5028(1996)015<2126:CEOCIS>2.3.CO;2
  14. Environ. Sci. Technol. v.34 Linkage of bioaccumulation and biological effects to changes in pollutant loads in South San Francisco bay Hornberger MI;SN Luoma;DJ Cain;F Parchaso;CL Brown;RM Bouse;C Wellise;JK Thomson https://doi.org/10.1021/es991185g
  15. Neth. J. Sea. Res. v.19 Food intake and growth in the laboratory Hummel H https://doi.org/10.1016/0077-7579(85)90044-4
  16. Science v.287 Influence of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments Lee BG;SB Griscom;JS Lee;SN Luoma;HJ Choi;CH Koh;NS Fisher https://doi.org/10.1126/science.287.5451.282
  17. Mar. Ecol. Prog. Ser. v.216 Influence of reactive sulfide (AVS) and supplementary food on Ag, Cd, and Zn bioaccumulation in the marine polychaete, Neanthes anrenaceodentata Lee JS;BG Lee;H Yoo;CH Koh;SN Luoma https://doi.org/10.3354/meps216129
  18. Environ. Sci. Technol. v.34 Influence of acid-volatile sulfides and metal concentrations on metal partitioning in contaminated sediments Lee JS;BG Lee;SN Luoma;HJ Choi;CH Koh;CL Brown https://doi.org/10.1021/es001034+
  19. Mar. Pollut. Bull. v.42 Biomarker of sublethal stress in the soft-sediment bivalve Austrovenus stutchburyi exposed in-situ to contaminated sediment in an urban New Zealand harbour Luca-Abbott SD https://doi.org/10.1016/S0025-326X(00)00226-5
  20. Biological Implications of Metals in the Environment, NTIS CONF-750920 The availability of sediment-bound cobalt, silver, and zinc to a deposit-feeding clam Luoma SN;EA Jenne;Wildung RE(ed.);H Drucker(ed.)
  21. Ecological risk assessment of contaminated sediments Uncertainties in assessing contaminant exposure from sediments Luoma SN;NS Fisher;Biddlinger GR(ed.);T Dillon(ed.);CG Ingersoll(ed.)
  22. Environ. Sci. Technol. v.30 Bioavailability of sedimentary contaminants subject to deposit-feeder digestion Mayer LM;Z Chen;RH Findlay;J Fang;S Sampson;RFL Self;PA Jumars;C Quetel;OFX Donald https://doi.org/10.1021/es960110z
  23. Earth-Sci. Review v.24 The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters Morse JW;FJ Millero;JC Cornwell;D Rickard https://doi.org/10.1016/0012-8252(87)90046-8
  24. Mar. Pollut. Bull. v.53 National distribution of chemical concentrations in mussels and oysters in the USA O'Connor TP
  25. Mar. Biol. v.108 Uptake of cadmium in tropical marine lamellibranchs, and effects of physiological behavior Patel B;K Anthony https://doi.org/10.1007/BF01313656
  26. Biomarkers of environmental contamination Metal-binding proteins and peptides for the detection of heavy metals in aquatic organisms Petering DH;WH Goudrich;S Krezoski;D Weber;CF Shaw;R Spieler;L Zettergren;McCarthy JF(ed.);LR Shugart(ed.)
  27. Sci. Total Environ no.SUP. Effect of heavy metals on tissue glycogen levels in the freshwater mussel, Lamellidens corrianus Rajalekshmi P;A Mohandas
  28. Analytical Biochemistry v.58 Direct enzymatic procedure for the determination of liver glycogen Roehrig, L Karla;JB Allred https://doi.org/10.1016/0003-2697(74)90210-3
  29. Coastal and estuarine risk assessment Dietary metals exposure and toxicity to aquatic organisms: Implications for ecological risk assessment Schlekat CE;BG Lee;Sn LuomaNewman MC(ed.);MH Roberts(ed.);Jr. RC Hale(ed.)
  30. Environ. Sci. Technol. v.32 Effect of shortterm resuspension events on trace metal speciation in polluted anoxic sediments Simpson SL;SC Apte;GE Batley https://doi.org/10.1021/es970568g
  31. Mar. Pollut. Bull. v.34 Effects of copper exposure on the scope for growth of the clam Ruditapes decussatus from southern Portugal Sobral P;J Widdows https://doi.org/10.1016/S0025-326X(97)00116-1
  32. J. Invert. Path. v.47 Chronic histopathological effects of shortterm copper and cadmium exposure by environmental pollutants Sunila I https://doi.org/10.1016/0022-2011(86)90040-6
  33. Mar. Biol. v.137 Effects of chronic copper exposure on the green mussel Perna viridis Sze PWC;SY Lee https://doi.org/10.1007/s002270000350
  34. Mar. Ecol. Prog. Ser. v.173 Linking the sediment geochemistry of an intertidal region to metal bioavailability in the deposit feeder Macoma balthica Thomas CA;IL Bendell-Young https://doi.org/10.3354/meps173197
  35. Sci. Total Environ. v.187 The effect of polluted sediment of the gonadal development and embryogenesis of bivalves Timmermans BMH;H Hummel;RH Bogaards https://doi.org/10.1016/0048-9697(96)05145-5
  36. Environ. Toxicol. Chem. v.19 Alterations in prey capture and induction of metallothioneins in grass shrimp fed cadmium-contaminated prey Wallace WG;TM Hoexum Brouwer;TM Marius Brouwer;GR Lopez https://doi.org/10.1897/1551-5028(2000)019<0962:AIPCAI>2.3.CO;2
  37. Sci. Total Environ. v.237;238 Delineating metal accumulation pathways for marine invertebrates Wang WX;NS Fisher
  38. Trans. Am. Fish. Sco. v.127 Effects on rainbow trout fry of a metals-contaminated diet of benthic invertebrates from the Clark Fork River, Montana Woodward DF