DOI QR코드

DOI QR Code

Bioaccumulation and growth change in the abalone Haliotis discus hannai exposed to copper

구리(Cu) 노출에 따른 전복, Haliotis discus hannai의 생체축적 및 성장의 변화

  • Park, Hee-Ju (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kang, Ju-Chan (Department of Aquatic Life Medicine, Pukyong National University)
  • 박희주 (부경대학교 수산생명의학과) ;
  • 강주찬 (부경대학교 수산생명의학과)
  • Received : 2011.08.24
  • Accepted : 2012.08.02
  • Published : 2012.08.31

Abstract

The objective of this study was to investigate the effects of exposured $Cu^{2+}$ on growth and bioaccumulation of abalone Haliotis discus hannai. Abalone were exposed to various concentration of $Cu^{2+}$ (0, 5, 10, 20, $40{\mu}g/L$). Bioaccumulation of tissues, hepatopancreas, muscles and gills were measured. hepatopancreas and gills $Cu^{2+}$ concentration of abalone increases to extent during the 4 weeks accumulation time. But muscles showed no significant changes, with respect to control. These data indicate that abalone Haliotis discus hannai hepatopancreas and gills can be considered adequate target tissues for waterborne exposured of $Cu^{2+}$. Weight growth rate of abalone exposed to $Cu^{2+}$ was significantly decreased in 20 and $40{\mu}g/L$ groups compared to control. This study revealed that high $Cu^{2+}$ concentration (${\geq}20{\mu}g/{\ell}$) reduced growth of abalone. These data indicate that excessive waterborne $Cu^{2+}$ can affect the toxicity of xenbiotics to abalone through alterations in growth rate. Thus, environmental standard of $Cu^{2+}$ $20{\mu}g/L$, should be considered a potential source of variation in toxicological studies with abalone.

Keywords

References

  1. APHA-AWWA-WEF.: Standard methods for the examination of water and wastewater. 18th. Ed., APHA, Washington, D. C., 1992.
  2. Ballan C., Dufrancais, A.Y. Jeantet, A. Geffard, J.C. Amiard and C. Amiard-Triquet: Cellular and tissular distribution of copper in an intrasedimentary bivalve, the Baltic clam Macoma balthica, originating from a clean or a metal-rich site, Can. J. Fish. Aquat. Sci. 58: 1964-1974, 2001. https://doi.org/10.1139/f01-129
  3. Bryan, G. W.: Heavy metal contamination in the sea. In Marine Pollution, R. Johnston, eds., Academic Press, New York, 185-302, 1976.
  4. Cropton T. R., Toxicants in the Aqueous Ecosystem, John & Sons Ltd, 1997.
  5. Davis, K.G., Mertz, W.: Copper. In: Mertz, W. (Ed.), Trace Elements in Human and Animals Nutrition. Academic Press, New York: 301-364, 1987.
  6. De Boeck G, Vlaeminck and R Blust.: Effectsif sublethal coper exposure on copper accumulation, food consumption, growth, energy stores, and nucleic acid content in common carp. Arch. Environ. Contam. Toxicol. 33: 415-422, 1997. https://doi.org/10.1007/s002449900271
  7. E.K. Raftopoulou and V.K. Dimitriadis: Comparative study of the accumulation and detoxification of Cu (essential metal) and Hg (nonessential metal) in the digestive gland and gills of mussels Mytilus galloprovincialis, using analytical and histochemical techniques. Chemosphere Volume 83, Issue 8: 1155-1165, 2011. https://doi.org/10.1016/j.chemosphere.2011.01.003
  8. Fernandes JC and Henriques FS.: Biochemical, physiological and structural effects of excess copper in plants, Botany Rev 57: 246-273, 1991. https://doi.org/10.1007/BF02858564
  9. Geret F. and M. J. Bebianno.: Does Zinc produce reactive oxygen species in Ruditapes decussatus. Ecotoxicol. Safe. 57: 399-409, 2004. https://doi.org/10.1016/j.ecoenv.2003.07.002
  10. Gert Flik, Xander J. H. X. Stouthart, F. A. Tom Spanings, Robert A. C. Lock, James C. Fenwick, Sjoerd E. Wendelaar Bonga: Stress response to waterborne Cu during early life stages of carp, Cyprinus carpio Aquatic Toxicology, Volume 56, Issue 3: 167-176, 2002. https://doi.org/10.1016/S0166-445X(01)00202-8
  11. Gu Jing, Yu Li, Liping Xie, Rongqing Zhang: Metal accumulation and enzyme activities in gills and digestive gland of pearl oyster (Pinctada fucata) exposed to copper. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, Volume 144, Issue 2: 184-190, 2006 https://doi.org/10.1016/j.cbpc.2006.08.005
  12. Jacqueline A. Leea, Islay D. Marsdena and Chris N. Glover: The influence of salinity on copper accumulation and its toxic effects in estuarine animals with differing osmoregulatory strategies. Aquatic Toxicology, Available online 13 April, 2010.
  13. Kawai K.: The cytochrome system in marine lamellibranch tissues. Biol Bull 117:125-132, 1959. https://doi.org/10.2307/1539044
  14. Lall, S.P.: The minerals. In: Halver, J.E., Hardy, R.W. (Eds.), Fish Nutrition. Academic Press, New York: 259-308, 2002.
  15. Lidon FC and Henriques FS.: Limiting step on photo-synthesis of rice plants treated with varying copper levels, J Plant Physiology 138: 115-118, 1991. https://doi.org/10.1016/S0176-1617(11)80741-8
  16. Lidon FC, Ramalho J and Henriques FS.: Copper inhibition of rice photosynthesis, J. Plant Physiology 142: 12-17, 1993. https://doi.org/10.1016/S0176-1617(11)80100-8
  17. Lorenzo J.I., R. Beiras, V.K. Mubiana and R. Blust : Copper uptake by Mytilus edulis in the presence of humic acids. Environ. Toxicol. Chem., 24-4, 973-980, 2005. https://doi.org/10.1897/04-216r.1
  18. Marigomez, M. Soto, M.P. Cajaraville, E. Angulo and L. Giamberini, Cellular and subcellular distribution of metals in molluscs. Microsc. Res. Tech., 56, 358-392, 2002. https://doi.org/10.1002/jemt.10040
  19. Marr, J.C.A., J. Lipton, D. Cacela, J.A. Hansen, H.L. Bergman, J.S. Meyer and C. Hogstrand: Realtionships between copper exposure duration, tissue copper concentration, and rainbow trout growth. Aquat. Toxicol., 36: 17-30, 1996. https://doi.org/10.1016/S0166-445X(96)00801-6
  20. M. Minghettia, M.J. Leavera, E. Carpeneb and S.G. Georgea: Copper transporter 1, metallothionein and glutathione reductase genes are differentially expressed in tissues of sea bream (Sparus aurata) after exposure to dietary or waterborne copper. Toxicology & Pharmacology Volume 147, Issue 4: 450-459, 2008.
  21. Mcgeer, J.C., C. Szebedinszky, D.G. Mcdonald, and C.M. Wood: Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout. 1: Iono-regulatory disturbance and metabolic costs. Aquat. Toxicol. 50:231-243, 2000. https://doi.org/10.1016/S0166-445X(99)00105-8
  22. Niyogi S., C.N. Kamunde, C.M. Wood: Food selection, growth and physiology in relation to dietary sodium chloride content in rainbow trout (Oncorhynchus mykiss) under chronic waterborne Cu exposure Aquatic Toxicology, Volume 77, Issue 2: 210-221, 2006. https://doi.org/10.1016/j.aquatox.2005.12.005
  23. Ouzounidou G: Copper-induced changes on growth, metal content and photosynthetic functions of Alyssum montanum L. plants. Environmental and Experimental Botany 34: 165-172, 1994. https://doi.org/10.1016/0098-8472(94)90035-3
  24. Pagenkopf, G.K.: Gill surface interaction model for tracemetal toxicity to fishes: role of complexation, pH and water hardness. Environ. Sci. Technol., 17: 342-347, 1983. https://doi.org/10.1021/es00112a007
  25. Perschbacher PW and Wurts WA.: Effects of calcium and magnesium hardness on acute copper toxicity to juvenile channel catfish, Ictalurus punctatus. Aquaculture: 172: 275-280, 1999. https://doi.org/10.1016/S0044-8486(98)00499-2
  26. Sherba, M., D.W. Dunham and H.H. Harvey: Sublethal copper toxicity and food response in the freshwater crayfish, Cambarus bartonii (Cambaridae, Decapoda, Crustacea). Ecotoxicol. Environ. Saf., 46: 329-333, 2000. https://doi.org/10.1006/eesa.1999.1910
  27. Sutherland J, Major CW.: Internal heavy metal changes as a consequence of exposure of Mytilus edulis, the blue mussel, to elevated external copper (II) levels. Comp Biochem Physiol 68C: 63-67, 1981.
  28. Takaomi Arai, Masaru Maeda, Hiroshi yamakawa Akiyoshi kamatani and Nobuyuki Miyazaki: Growth effect on the uptake and elimination of trace metals in the abalones Haliotis. Fisheries science 68: 1094-1098, 2002. https://doi.org/10.1046/j.1444-2906.2002.00537.x
  29. Wen-Xiong Wang, Nicholas S. Fisher: Delineating metal accumulation pathways for marine invertebrates The Science of The Total Environment, Volumes 237: 459-472, 1999.
  30. Wong, P.P.K., L.M. Chu and C.K. Wong: Study of toxicity and bioaccumulation of copper in the silver sea bream Sparus sarba. Environ. Int., 25: 417-422, 1999. https://doi.org/10.1016/S0160-4120(99)00008-2
  31. Zar J.H.: Biostatistical Analysis. Prentice Hall, London, 662, 1996.
  32. 강주찬, 김재원, 김성길, 황운기: 구리 노출에 따른 넙치, Paralichthys olivaceus 치어의 만성독성. 한국환경생물학회지, 21-1: 36-41, 2003.

Cited by

  1. A Study on the Productivity Comparison of Red Seabream (Pagrus major) in Brass Nets and Fiber Nets for Offshore Sea Cages vol.33, pp.6, 2012, https://doi.org/10.13000/jfmse.2021.12.33.6.1466