Browse > Article

Effects of Salinity, Temperature and Food Type on the Uptake and Elimination Rates of Cd, Cr, and Zn in the Asiatic Clam Corbicula fluminea  

Lee, Jung-Suk (Institute of Environmental Protection and Safety, NeoEnBiz Co.)
Lee, Byeong-Gweon (Department of Oceanography, College of Natural Sciences, Chonnam National University)
Publication Information
Ocean Science Journal / v.40, no.2, 2005 , pp. 79-89 More about this Journal
Abstract
Laboratory radiotracer experiments were conducted to determine assimilation efficiencies (AE) from ingested algal food and oxic sediment particles, uptake rates from the dissolved phase, and the efflux rates of Cd, Cr and Zn in the Asiatic clam Corbicula fluminea. Among three elements, AE from both algal and sediment food was greatest for Cd, followed by Zn and Cr. The AEs of tested elements from algal food (Phaeodactylum tricornutum) were consistently higher than those from sediments at a given salinity and temperature. The influence of salinity (0, 4 and 8 psu) and temperature (5, 13 and $21^{\circ}C$) on the metal AEs was not evident for most tested elements, except Cd AEs from sediment. The rate constant of metal uptake from the dissolved phase $(k_u)$ was greatest for Cd, followed by Zn and Cr in freshwater media. However, in saline water, the $(k_u)$ of Zn were greater than those of Cd. The influx rate of all tested metals increased with temperature. The efflux rate constant was greatest for Cr $(0.02\;d^{-1})$, followed by Zn $(0.010{\sim}0.017\;d^{-1})$ and $Cd\;(0.006\;d^{-1})$. The efflux rate constant for Zn in clam tissues depurated in 0 psu $(0.017\;d^{-1})$ was faster than that in 8 psu $(0.010\;d^{-1})$. Overall results showed that the variation of salinity and temperature in estuarine systems can considerably influence the metal bioaccumulation potential in the estuarine clam C. fluminea. The relatively high Cd accumulation capacity of C. fluminea characterized by the high AE, high dissolved influx rate and low efflux rate, suggested that this clam species can be used as an efficient biomonitor for the Cd contamination in freshwater and estuarine environments.
Keywords
Corbicula fluminea; radiotracer; bioaccumulation; uptake; elimination; salinity; temperature; metal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Blust, R., E. Kochelbert, and M. Baillieul. 1992. Effect of salinity on the uptake of cadmium by the brine shrimp Artemia franciscana. Mar. Ecol. Prog. Ser., 84, 245-254   DOI   ScienceOn
2 Folk, R.L. 1954. The distribution between grain size and mineral composition in sedimentary rock nomenclature. J. Geol., 23, 1-12
3 Graney, R.L., D.S. Cherry, and J. Cairns, Jr. 1983. Heavy metal indicator potential of the asiatic clam (Corbicula fluminea) in artificial stream systems. Hydrobiologia, 105, 81-88
4 Lee, B.G., S. Griscom, J.S. Lee, H.J. Choi, C.-H. Koh, S.N. Luoma, and N.S. Fisher. 2000. Influence of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments. Science, 287, 282-284   DOI   PUBMED   ScienceOn
5 Luoma, S.N., C. Johns, N.S. Fisher, N.A. Steinberg, R.S. Oremland, and J.R. Reinfelder. 1992. Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways. Environ. Sci. Technol., 26, 485-491   DOI
6 Nugegoda, D. and P.S. Rainbow. 1989a. Effects of salinity changes on zinc uptake and regulation by the decapod crustaceans Palaemon elegans and Palaemonetes varians. Mar. Ecol. Prog. Ser., 51, 57-75   DOI
7 Nugegoda, D. and P.S. Rainbow. 1989b. Salinity, osmolarity, and zinc uptake in Palaemon elegans (Crustacea: Decapoda). Mar. Ecol. Prog. Ser., 55, 149-157   DOI
8 Rao, D.G.V.P. and M.A.Q. Khan. 2000. Enhancement of copper toxicity by high temperature and its relationship with respiration and metabolism. Wat. Environ. Res., 72, 175-178   DOI   ScienceOn
9 Roditi, H.A. and N.S. Fisher. 1999. Rates and routes of trace element uptake in zebra mussels. Limnol. Oceanogr., 44, 1730-1749   DOI   ScienceOn
10 Selck, H., V.E. Forbes, and T.L. Forbes. 1998. Toxicity and toxicokinetics of cadmium in Capitella sp. I: Relative importance of water and sediment as routes of cadmium uptake. Mar. Ecol. Prog. Ser., 164, 167-178   DOI
11 Jorgensen, C.B., R.S. Larsen, and H.U. Riisgard. 1990. Effects of temperature on the mussel pump. Mar. Ecol. Prog. Ser., 64, 89-97   DOI
12 Ke, C. and W.-X. Wang. 2001. Bioaccumulation of Cd, Se, and Zn in an esturine oyster (Crassostrea rivularis) and a coastal oyster (Saccostrea glomerata). Aquat. Toxicol., 56, 33-51   DOI   ScienceOn
13 Schlekat, C.E., A.W. Decho, and G.T. Chandler. 1999. Dietary assimilation of cadmium associated with bacterial exopolymer sediment coastings by the estuarine amphipod Leptocheirus plumulosus: Effects of Cd concentration and salinity. Mar. Ecol. Prog. Ser., 183, 205-216   DOI
14 Morel, F.M.M., J.C. Westall, J.G. Rueter, and J.P. Chaplick. 1975. Description of the algal growth media Aquil and Fraquil. Department of Civil Engineering, Massachusetts Institute of Technology, Technical note No.16, Cambridge, MA., USA
15 Phillips, D.J.H. 1980. Quantitative aquatic biological indicators: Their use to monitor trace metal and organochlorine pollution. Applied Science Publishers Ltd., London
16 Decho, A.W. and S.L. Luoma. 1991. Time-courses in the retention of food material in the bivalves Potamocorbula amurensis and Macoma Balthica: Significance to the absorption of carbon and chromium. Mar. Ecol. Prog. Ser., 78, 303-314   DOI
17 Blackmore, G. and W.-X. Wang. 2003. Inter-population differences in Cd, Cr, Se and Zn accumulation by the green mussel Perna viridis acclimated at different salinities. Aquat. Toxicol., 62, 205-218   DOI   ScienceOn
18 Bjerregaard, P. and M.H. Depledge. 1994. Cadmium accumulation in Littorina littorea, Mytilus edulis and Carcinus maenas: The influence of salinity and calcium ion concentrations. Mar. Biol., 119, 385-395   DOI   ScienceOn
19 Chan, H.M., P. Bjerregaard, P.S. Rainbow, and M.H. Depledge. 1992. Uptake of zinc and cadmium by two different populations of shore crab Carcinus maenus at different salinity. Mar. Ecol. Prog. Ser., 86, 91-97   DOI
20 Wang, W.-X., S.B. Griscom, and N.S. Fisher. 1997. Bioavailability of Cr(III) and Cr(VI) to marine mussels from solute and particulate pathways. Environ. Sci. Technol., 31, 603-611   DOI   ScienceOn
21 Hutchins, D.A., I. Stupakoff, S. Hook, S.N. Luoma, and N.S. Fisher. 1998. Effects of arctic temperatures on distribution and retention of the nuclear waste radionuclides $^{241}Am$, $^{57}Co$, and $^{137}Cs$ in bioindicator bivalve Macoma balthica. Mar. Environ. Res., 45, 17-28   DOI   ScienceOn
22 Lee, B.G. and S.N. Luoma. 1998. Influence of microalgal biomass on absorption efficiency of Cd, Cr and Zn by two bivalves from San Francisco Bay. Limnol. Oceanogr., 43, 1455-1466   DOI   ScienceOn
23 Rainbow, P.S. 1995. Physiology, physicochemistry and metal uptake-a crustacean perspective. Mar. Pollut. Bull., 31, 55-59   DOI   ScienceOn
24 Rainbow, P.S. and M.H. Kwan. 1995. Physiological responses and the uptake of cadmium and zinc by the amphipod crustacean Orchestia gammarellus. Mar. Ecol. Prog. Ser., 127, 87-102   DOI
25 Wang, W.-X. 2001. Comparison of metal uptake rate and absorption efficiency in marine bivalves. Environ. Toxicol. Chem., 20, 1367-1373   DOI   ScienceOn
26 Chong, I. and W.X. Wang. 2000. Assimilation of Cd, Cr, and Zn by the green mussel Perna viridis and the clam Ruditapes philippinarum. Environ. Toxicol. Chem., 19, 1660-1667   DOI   ScienceOn
27 Goldberg, E.D., M. Koide, V. Hodge, A.R. Flegal, and J. Martin. 1983. US Mussel Watch: 1977-1978 results on trace metals and radionuclides. Estuar. Coast. Shelf. Sci., 16, 69-93
28 Lee, J.S., B.G. Lee, H. Yoo, C.-H. Koh, and S.N. Luoma. 2001. Influence of reactive sulfide (AVS) and supplementary food on Ag, Cd and Zn bioaccumulation in the marine polychaete, Neanthes arenaceodentata. Mar. Ecol. Prog. Ser., 216, 129-140   DOI   ScienceOn
29 Fischer, H. 1986. Influence of temperature, salinity, and oxygen on the cadmium balance of mussels Mytilus edulis. Mar. Ecol. Prog. Ser., 32, 265-278   DOI
30 Mantoura, R.F.C., A. Dickson, and J.P. Riley. 1978. The complexation of metals with humic materials in natural waters. Estuar. Coast. Mar. Sci., 6, 387-408   DOI
31 Mishima, J. and E.P. Odum. 1963. Excretion rate of $Zn^{65}$ by Littorina irrorata in relation to temperature and body size. Limnol. Oceanogr., 8, 39-44   DOI   ScienceOn
32 Wang, W.-X., N.S. Fisher, and S.N. Luoma. 1996. Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis. Mar. Ecol. Prog. Ser., 140, 91-113   DOI   ScienceOn
33 Lee, B.G., W.G. Wallas, and S.N. Luoma. 1998. Uptake and loss kinetics of Cd, Cr and Zn in the bivalves Potamocorbula amurensis and Macoma balthica: Effects of size and salinity. Mar. Ecol. Prog. Ser., 175, 177-189   DOI
34 Wang, W.-X., N.S. Fisher, and S.N. Luoma. 1995. Assimilation of trace elements ingested by the mussel Mytilus edulis: Effects of algal food abundance. Mar. Ecol. Prog. Ser., 129, 165-176   DOI   ScienceOn
35 Podolsky, R.D. 1994. Temperature and water viscosity: physiological versus mechanical effects on suspension feeding. Science, 265, 100-103   DOI   PUBMED   ScienceOn
36 Campbell, P.G.C. 1995. Interaction between trace metals and aquatic organisms: A critique of the free-ion activity model. p. 45-102. In: Metal speciation and aquatic systems. ed. by A. Tessier and D.R. Turner. John Wiley & Sons Ltd., New York
37 Odin, M., F. Ribeyre, and A. Boudou. 1994. Temperature and pH effects on cadmium and methylmercury bioaccumulation by nymphs of the burrowing mayfly Hexagenia regida, from water column or sediment source. Arch. Environ. Contam. Toxicol., 31, 339-349   DOI   ScienceOn
38 Reinfelder, J.R. and N.S. Fisher. 1991. The assimilation of elements ingested by marine copepods. Science, 251, 794-796   DOI   PUBMED   ScienceOn
39 Wang, W.-X. and N.S. Fisher. 1996. Assimilation of trace elements and carbon by the mussel Mytilus edulis: Effects of food composition. Limnol. Oceanogr., 41, 197-207   DOI   ScienceOn
40 Depledge, M.H. 1990. Models of regulation and accumulation of trace metals in marine invertebrates. Comp. Biochem. Physiol., 97c, 1-7
41 Wang, W.-X. and N.S. Fisher. 1997. Modeling metal bioavailability for Marine Mussels. Rev. Environ. Contam. Toxicol., 151, 39-65
42 Croteau, M.-N., L. Hare, and A. Tessier. 2002. Influence of temperature on Cd accumulation by species of the biomonitor Chaoborus. Limnol. Oceanogr., 47, 505-514   DOI   ScienceOn
43 Langston, W.J. and S.K. Spence. 1995. Biological factors involved in metal concentrations observed in aquatic organisms. p. 407-478. In: Metal speciation and bioavailability in aquatic systems. ed. by A. Tessier. and D.R. Turner. John Wiley & Sons, Chichester
44 Dahlgaard, H. 1986. Effects of season and temperature on longterm in situ loss rates of Pu, Am, Np, Eu, Ce, Ag, Tc, Zn, Co, and Mn in a Baltic Mytilus edulis population. Mar. Ecol. Prog. Ser., 33, 157-165   DOI
45 Inza, B., F. Ribeyre, and A. Boudou. 1998. Dynamics of cadmium and mercury compounds (inorganic mercury or methylmercury): Uptake ad depuration in Corbicula fluminea. Effects of temperature and pH. Aquat. Toxicol., 43, 273-285   DOI   ScienceOn