Effects of Salinity, Temperature and Food Type on the Uptake and Elimination Rates of Cd, Cr, and Zn in the Asiatic Clam Corbicula fluminea

  • Lee, Jung-Suk (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Lee, Byeong-Gweon (Department of Oceanography, College of Natural Sciences, Chonnam National University)
  • Published : 2005.06.30

Abstract

Laboratory radiotracer experiments were conducted to determine assimilation efficiencies (AE) from ingested algal food and oxic sediment particles, uptake rates from the dissolved phase, and the efflux rates of Cd, Cr and Zn in the Asiatic clam Corbicula fluminea. Among three elements, AE from both algal and sediment food was greatest for Cd, followed by Zn and Cr. The AEs of tested elements from algal food (Phaeodactylum tricornutum) were consistently higher than those from sediments at a given salinity and temperature. The influence of salinity (0, 4 and 8 psu) and temperature (5, 13 and $21^{\circ}C$) on the metal AEs was not evident for most tested elements, except Cd AEs from sediment. The rate constant of metal uptake from the dissolved phase $(k_u)$ was greatest for Cd, followed by Zn and Cr in freshwater media. However, in saline water, the $(k_u)$ of Zn were greater than those of Cd. The influx rate of all tested metals increased with temperature. The efflux rate constant was greatest for Cr $(0.02\;d^{-1})$, followed by Zn $(0.010{\sim}0.017\;d^{-1})$ and $Cd\;(0.006\;d^{-1})$. The efflux rate constant for Zn in clam tissues depurated in 0 psu $(0.017\;d^{-1})$ was faster than that in 8 psu $(0.010\;d^{-1})$. Overall results showed that the variation of salinity and temperature in estuarine systems can considerably influence the metal bioaccumulation potential in the estuarine clam C. fluminea. The relatively high Cd accumulation capacity of C. fluminea characterized by the high AE, high dissolved influx rate and low efflux rate, suggested that this clam species can be used as an efficient biomonitor for the Cd contamination in freshwater and estuarine environments.

Keywords

References

  1. Bjerregaard, P. and M.H. Depledge. 1994. Cadmium accumulation in Littorina littorea, Mytilus edulis and Carcinus maenas: The influence of salinity and calcium ion concentrations. Mar. Biol., 119, 385-395 https://doi.org/10.1007/BF00347535
  2. Blackmore, G. and W.-X. Wang. 2003. Inter-population differences in Cd, Cr, Se and Zn accumulation by the green mussel Perna viridis acclimated at different salinities. Aquat. Toxicol., 62, 205-218 https://doi.org/10.1016/S0166-445X(02)00083-8
  3. Blust, R., E. Kochelbert, and M. Baillieul. 1992. Effect of salinity on the uptake of cadmium by the brine shrimp Artemia franciscana. Mar. Ecol. Prog. Ser., 84, 245-254 https://doi.org/10.3354/meps084245
  4. Campbell, P.G.C. 1995. Interaction between trace metals and aquatic organisms: A critique of the free-ion activity model. p. 45-102. In: Metal speciation and aquatic systems. ed. by A. Tessier and D.R. Turner. John Wiley & Sons Ltd., New York
  5. Chan, H.M., P. Bjerregaard, P.S. Rainbow, and M.H. Depledge. 1992. Uptake of zinc and cadmium by two different populations of shore crab Carcinus maenus at different salinity. Mar. Ecol. Prog. Ser., 86, 91-97 https://doi.org/10.3354/meps086091
  6. Chong, I. and W.X. Wang. 2000. Assimilation of Cd, Cr, and Zn by the green mussel Perna viridis and the clam Ruditapes philippinarum. Environ. Toxicol. Chem., 19, 1660-1667 https://doi.org/10.1897/1551-5028(2000)019<1660:AOCCAZ>2.3.CO;2
  7. Croteau, M.-N., L. Hare, and A. Tessier. 2002. Influence of temperature on Cd accumulation by species of the biomonitor Chaoborus. Limnol. Oceanogr., 47, 505-514 https://doi.org/10.4319/lo.2002.47.2.0505
  8. Dahlgaard, H. 1986. Effects of season and temperature on longterm in situ loss rates of Pu, Am, Np, Eu, Ce, Ag, Tc, Zn, Co, and Mn in a Baltic Mytilus edulis population. Mar. Ecol. Prog. Ser., 33, 157-165 https://doi.org/10.3354/meps033157
  9. Decho, A.W. and S.L. Luoma. 1991. Time-courses in the retention of food material in the bivalves Potamocorbula amurensis and Macoma Balthica: Significance to the absorption of carbon and chromium. Mar. Ecol. Prog. Ser., 78, 303-314 https://doi.org/10.3354/meps078303
  10. Depledge, M.H. 1990. Models of regulation and accumulation of trace metals in marine invertebrates. Comp. Biochem. Physiol., 97c, 1-7
  11. Fischer, H. 1986. Influence of temperature, salinity, and oxygen on the cadmium balance of mussels Mytilus edulis. Mar. Ecol. Prog. Ser., 32, 265-278 https://doi.org/10.3354/meps032265
  12. Folk, R.L. 1954. The distribution between grain size and mineral composition in sedimentary rock nomenclature. J. Geol., 23, 1-12
  13. Goldberg, E.D., M. Koide, V. Hodge, A.R. Flegal, and J. Martin. 1983. US Mussel Watch: 1977-1978 results on trace metals and radionuclides. Estuar. Coast. Shelf. Sci., 16, 69-93
  14. Graney, R.L., D.S. Cherry, and J. Cairns, Jr. 1983. Heavy metal indicator potential of the asiatic clam (Corbicula fluminea) in artificial stream systems. Hydrobiologia, 105, 81-88
  15. Hutchins, D.A., I. Stupakoff, S. Hook, S.N. Luoma, and N.S. Fisher. 1998. Effects of arctic temperatures on distribution and retention of the nuclear waste radionuclides $^{241}Am$, $^{57}Co$, and $^{137}Cs$ in bioindicator bivalve Macoma balthica. Mar. Environ. Res., 45, 17-28 https://doi.org/10.1016/S0141-1136(97)00019-6
  16. Inza, B., F. Ribeyre, and A. Boudou. 1998. Dynamics of cadmium and mercury compounds (inorganic mercury or methylmercury): Uptake ad depuration in Corbicula fluminea. Effects of temperature and pH. Aquat. Toxicol., 43, 273-285 https://doi.org/10.1016/S0166-445X(98)00055-1
  17. Jorgensen, C.B., R.S. Larsen, and H.U. Riisgard. 1990. Effects of temperature on the mussel pump. Mar. Ecol. Prog. Ser., 64, 89-97 https://doi.org/10.3354/meps064089
  18. Ke, C. and W.-X. Wang. 2001. Bioaccumulation of Cd, Se, and Zn in an esturine oyster (Crassostrea rivularis) and a coastal oyster (Saccostrea glomerata). Aquat. Toxicol., 56, 33-51 https://doi.org/10.1016/S0166-445X(01)00185-0
  19. Langston, W.J. and S.K. Spence. 1995. Biological factors involved in metal concentrations observed in aquatic organisms. p. 407-478. In: Metal speciation and bioavailability in aquatic systems. ed. by A. Tessier. and D.R. Turner. John Wiley & Sons, Chichester
  20. Lee, B.G. and S.N. Luoma. 1998. Influence of microalgal biomass on absorption efficiency of Cd, Cr and Zn by two bivalves from San Francisco Bay. Limnol. Oceanogr., 43, 1455-1466 https://doi.org/10.4319/lo.1998.43.7.1455
  21. Lee, B.G., W.G. Wallas, and S.N. Luoma. 1998. Uptake and loss kinetics of Cd, Cr and Zn in the bivalves Potamocorbula amurensis and Macoma balthica: Effects of size and salinity. Mar. Ecol. Prog. Ser., 175, 177-189 https://doi.org/10.3354/meps175177
  22. Lee, B.G., S. Griscom, J.S. Lee, H.J. Choi, C.-H. Koh, S.N. Luoma, and N.S. Fisher. 2000. Influence of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments. Science, 287, 282-284 https://doi.org/10.1126/science.287.5451.282
  23. Lee, J.S., B.G. Lee, H. Yoo, C.-H. Koh, and S.N. Luoma. 2001. Influence of reactive sulfide (AVS) and supplementary food on Ag, Cd and Zn bioaccumulation in the marine polychaete, Neanthes arenaceodentata. Mar. Ecol. Prog. Ser., 216, 129-140 https://doi.org/10.3354/meps216129
  24. Luoma, S.N., C. Johns, N.S. Fisher, N.A. Steinberg, R.S. Oremland, and J.R. Reinfelder. 1992. Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways. Environ. Sci. Technol., 26, 485-491 https://doi.org/10.1021/es00027a005
  25. Mantoura, R.F.C., A. Dickson, and J.P. Riley. 1978. The complexation of metals with humic materials in natural waters. Estuar. Coast. Mar. Sci., 6, 387-408 https://doi.org/10.1016/0302-3524(78)90130-5
  26. Mishima, J. and E.P. Odum. 1963. Excretion rate of $Zn^{65}$ by Littorina irrorata in relation to temperature and body size. Limnol. Oceanogr., 8, 39-44 https://doi.org/10.4319/lo.1963.8.1.0039
  27. Morel, F.M.M., J.C. Westall, J.G. Rueter, and J.P. Chaplick. 1975. Description of the algal growth media Aquil and Fraquil. Department of Civil Engineering, Massachusetts Institute of Technology, Technical note No.16, Cambridge, MA., USA
  28. Nugegoda, D. and P.S. Rainbow. 1989a. Effects of salinity changes on zinc uptake and regulation by the decapod crustaceans Palaemon elegans and Palaemonetes varians. Mar. Ecol. Prog. Ser., 51, 57-75 https://doi.org/10.3354/meps051057
  29. Nugegoda, D. and P.S. Rainbow. 1989b. Salinity, osmolarity, and zinc uptake in Palaemon elegans (Crustacea: Decapoda). Mar. Ecol. Prog. Ser., 55, 149-157 https://doi.org/10.3354/meps055149
  30. Odin, M., F. Ribeyre, and A. Boudou. 1994. Temperature and pH effects on cadmium and methylmercury bioaccumulation by nymphs of the burrowing mayfly Hexagenia regida, from water column or sediment source. Arch. Environ. Contam. Toxicol., 31, 339-349 https://doi.org/10.1007/BF00212672
  31. Phillips, D.J.H. 1980. Quantitative aquatic biological indicators: Their use to monitor trace metal and organochlorine pollution. Applied Science Publishers Ltd., London
  32. Podolsky, R.D. 1994. Temperature and water viscosity: physiological versus mechanical effects on suspension feeding. Science, 265, 100-103 https://doi.org/10.1126/science.265.5168.100
  33. Rainbow, P.S. 1995. Physiology, physicochemistry and metal uptake-a crustacean perspective. Mar. Pollut. Bull., 31, 55-59 https://doi.org/10.1016/0025-326X(95)00005-8
  34. Rainbow, P.S. and M.H. Kwan. 1995. Physiological responses and the uptake of cadmium and zinc by the amphipod crustacean Orchestia gammarellus. Mar. Ecol. Prog. Ser., 127, 87-102 https://doi.org/10.3354/meps127087
  35. Rao, D.G.V.P. and M.A.Q. Khan. 2000. Enhancement of copper toxicity by high temperature and its relationship with respiration and metabolism. Wat. Environ. Res., 72, 175-178 https://doi.org/10.2175/106143000X137257
  36. Reinfelder, J.R. and N.S. Fisher. 1991. The assimilation of elements ingested by marine copepods. Science, 251, 794-796 https://doi.org/10.1126/science.251.4995.794
  37. Roditi, H.A. and N.S. Fisher. 1999. Rates and routes of trace element uptake in zebra mussels. Limnol. Oceanogr., 44, 1730-1749 https://doi.org/10.4319/lo.1999.44.7.1730
  38. Schlekat, C.E., A.W. Decho, and G.T. Chandler. 1999. Dietary assimilation of cadmium associated with bacterial exopolymer sediment coastings by the estuarine amphipod Leptocheirus plumulosus: Effects of Cd concentration and salinity. Mar. Ecol. Prog. Ser., 183, 205-216 https://doi.org/10.3354/meps183205
  39. Selck, H., V.E. Forbes, and T.L. Forbes. 1998. Toxicity and toxicokinetics of cadmium in Capitella sp. I: Relative importance of water and sediment as routes of cadmium uptake. Mar. Ecol. Prog. Ser., 164, 167-178 https://doi.org/10.3354/meps164167
  40. Wang, W.-X., N.S. Fisher, and S.N. Luoma. 1995. Assimilation of trace elements ingested by the mussel Mytilus edulis: Effects of algal food abundance. Mar. Ecol. Prog. Ser., 129, 165-176 https://doi.org/10.3354/meps129165
  41. Wang, W.-X. and N.S. Fisher. 1996. Assimilation of trace elements and carbon by the mussel Mytilus edulis: Effects of food composition. Limnol. Oceanogr., 41, 197-207 https://doi.org/10.4319/lo.1996.41.2.0197
  42. Wang, W.-X., N.S. Fisher, and S.N. Luoma. 1996. Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis. Mar. Ecol. Prog. Ser., 140, 91-113 https://doi.org/10.3354/meps140091
  43. Wang, W.-X. and N.S. Fisher. 1997. Modeling metal bioavailability for Marine Mussels. Rev. Environ. Contam. Toxicol., 151, 39-65
  44. Wang, W.-X., S.B. Griscom, and N.S. Fisher. 1997. Bioavailability of Cr(III) and Cr(VI) to marine mussels from solute and particulate pathways. Environ. Sci. Technol., 31, 603-611 https://doi.org/10.1021/es960574x
  45. Wang, W.-X. 2001. Comparison of metal uptake rate and absorption efficiency in marine bivalves. Environ. Toxicol. Chem., 20, 1367-1373 https://doi.org/10.1897/1551-5028(2001)020<1367:COMURA>2.0.CO;2