Browse > Article
http://dx.doi.org/10.7847/jfp.2012.25.2.103

Bioaccumulation and growth change in the abalone Haliotis discus hannai exposed to copper  

Park, Hee-Ju (Department of Aquatic Life Medicine, Pukyong National University)
Kang, Ju-Chan (Department of Aquatic Life Medicine, Pukyong National University)
Publication Information
Journal of fish pathology / v.25, no.2, 2012 , pp. 103-109 More about this Journal
Abstract
The objective of this study was to investigate the effects of exposured $Cu^{2+}$ on growth and bioaccumulation of abalone Haliotis discus hannai. Abalone were exposed to various concentration of $Cu^{2+}$ (0, 5, 10, 20, $40{\mu}g/L$). Bioaccumulation of tissues, hepatopancreas, muscles and gills were measured. hepatopancreas and gills $Cu^{2+}$ concentration of abalone increases to extent during the 4 weeks accumulation time. But muscles showed no significant changes, with respect to control. These data indicate that abalone Haliotis discus hannai hepatopancreas and gills can be considered adequate target tissues for waterborne exposured of $Cu^{2+}$. Weight growth rate of abalone exposed to $Cu^{2+}$ was significantly decreased in 20 and $40{\mu}g/L$ groups compared to control. This study revealed that high $Cu^{2+}$ concentration (${\geq}20{\mu}g/{\ell}$) reduced growth of abalone. These data indicate that excessive waterborne $Cu^{2+}$ can affect the toxicity of xenbiotics to abalone through alterations in growth rate. Thus, environmental standard of $Cu^{2+}$ $20{\mu}g/L$, should be considered a potential source of variation in toxicological studies with abalone.
Keywords
$Cu^{2+}$ toxicity; Abalone; Growth rate; Bioaccumulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 APHA-AWWA-WEF.: Standard methods for the examination of water and wastewater. 18th. Ed., APHA, Washington, D. C., 1992.
2 Ballan C., Dufrancais, A.Y. Jeantet, A. Geffard, J.C. Amiard and C. Amiard-Triquet: Cellular and tissular distribution of copper in an intrasedimentary bivalve, the Baltic clam Macoma balthica, originating from a clean or a metal-rich site, Can. J. Fish. Aquat. Sci. 58: 1964-1974, 2001.   DOI   ScienceOn
3 Bryan, G. W.: Heavy metal contamination in the sea. In Marine Pollution, R. Johnston, eds., Academic Press, New York, 185-302, 1976.
4 Cropton T. R., Toxicants in the Aqueous Ecosystem, John & Sons Ltd, 1997.
5 Davis, K.G., Mertz, W.: Copper. In: Mertz, W. (Ed.), Trace Elements in Human and Animals Nutrition. Academic Press, New York: 301-364, 1987.
6 De Boeck G, Vlaeminck and R Blust.: Effectsif sublethal coper exposure on copper accumulation, food consumption, growth, energy stores, and nucleic acid content in common carp. Arch. Environ. Contam. Toxicol. 33: 415-422, 1997.   DOI   ScienceOn
7 E.K. Raftopoulou and V.K. Dimitriadis: Comparative study of the accumulation and detoxification of Cu (essential metal) and Hg (nonessential metal) in the digestive gland and gills of mussels Mytilus galloprovincialis, using analytical and histochemical techniques. Chemosphere Volume 83, Issue 8: 1155-1165, 2011.   DOI   ScienceOn
8 Fernandes JC and Henriques FS.: Biochemical, physiological and structural effects of excess copper in plants, Botany Rev 57: 246-273, 1991.   DOI
9 Geret F. and M. J. Bebianno.: Does Zinc produce reactive oxygen species in Ruditapes decussatus. Ecotoxicol. Safe. 57: 399-409, 2004.   DOI   ScienceOn
10 Gert Flik, Xander J. H. X. Stouthart, F. A. Tom Spanings, Robert A. C. Lock, James C. Fenwick, Sjoerd E. Wendelaar Bonga: Stress response to waterborne Cu during early life stages of carp, Cyprinus carpio Aquatic Toxicology, Volume 56, Issue 3: 167-176, 2002.   DOI   ScienceOn
11 Gu Jing, Yu Li, Liping Xie, Rongqing Zhang: Metal accumulation and enzyme activities in gills and digestive gland of pearl oyster (Pinctada fucata) exposed to copper. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, Volume 144, Issue 2: 184-190, 2006   DOI   ScienceOn
12 Jacqueline A. Leea, Islay D. Marsdena and Chris N. Glover: The influence of salinity on copper accumulation and its toxic effects in estuarine animals with differing osmoregulatory strategies. Aquatic Toxicology, Available online 13 April, 2010.
13 Kawai K.: The cytochrome system in marine lamellibranch tissues. Biol Bull 117:125-132, 1959.   DOI
14 Lall, S.P.: The minerals. In: Halver, J.E., Hardy, R.W. (Eds.), Fish Nutrition. Academic Press, New York: 259-308, 2002.
15 Lidon FC and Henriques FS.: Limiting step on photo-synthesis of rice plants treated with varying copper levels, J Plant Physiology 138: 115-118, 1991.   DOI
16 Lidon FC, Ramalho J and Henriques FS.: Copper inhibition of rice photosynthesis, J. Plant Physiology 142: 12-17, 1993.   DOI
17 M. Minghettia, M.J. Leavera, E. Carpeneb and S.G. Georgea: Copper transporter 1, metallothionein and glutathione reductase genes are differentially expressed in tissues of sea bream (Sparus aurata) after exposure to dietary or waterborne copper. Toxicology & Pharmacology Volume 147, Issue 4: 450-459, 2008.
18 Lorenzo J.I., R. Beiras, V.K. Mubiana and R. Blust : Copper uptake by Mytilus edulis in the presence of humic acids. Environ. Toxicol. Chem., 24-4, 973-980, 2005.   DOI   ScienceOn
19 Marigomez, M. Soto, M.P. Cajaraville, E. Angulo and L. Giamberini, Cellular and subcellular distribution of metals in molluscs. Microsc. Res. Tech., 56, 358-392, 2002.   DOI   ScienceOn
20 Marr, J.C.A., J. Lipton, D. Cacela, J.A. Hansen, H.L. Bergman, J.S. Meyer and C. Hogstrand: Realtionships between copper exposure duration, tissue copper concentration, and rainbow trout growth. Aquat. Toxicol., 36: 17-30, 1996.   DOI   ScienceOn
21 Mcgeer, J.C., C. Szebedinszky, D.G. Mcdonald, and C.M. Wood: Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout. 1: Iono-regulatory disturbance and metabolic costs. Aquat. Toxicol. 50:231-243, 2000.   DOI   ScienceOn
22 Niyogi S., C.N. Kamunde, C.M. Wood: Food selection, growth and physiology in relation to dietary sodium chloride content in rainbow trout (Oncorhynchus mykiss) under chronic waterborne Cu exposure Aquatic Toxicology, Volume 77, Issue 2: 210-221, 2006.   DOI   ScienceOn
23 Ouzounidou G: Copper-induced changes on growth, metal content and photosynthetic functions of Alyssum montanum L. plants. Environmental and Experimental Botany 34: 165-172, 1994.   DOI   ScienceOn
24 Pagenkopf, G.K.: Gill surface interaction model for tracemetal toxicity to fishes: role of complexation, pH and water hardness. Environ. Sci. Technol., 17: 342-347, 1983.   DOI   ScienceOn
25 Takaomi Arai, Masaru Maeda, Hiroshi yamakawa Akiyoshi kamatani and Nobuyuki Miyazaki: Growth effect on the uptake and elimination of trace metals in the abalones Haliotis. Fisheries science 68: 1094-1098, 2002.   DOI   ScienceOn
26 Perschbacher PW and Wurts WA.: Effects of calcium and magnesium hardness on acute copper toxicity to juvenile channel catfish, Ictalurus punctatus. Aquaculture: 172: 275-280, 1999.   DOI   ScienceOn
27 Sherba, M., D.W. Dunham and H.H. Harvey: Sublethal copper toxicity and food response in the freshwater crayfish, Cambarus bartonii (Cambaridae, Decapoda, Crustacea). Ecotoxicol. Environ. Saf., 46: 329-333, 2000.   DOI   ScienceOn
28 Sutherland J, Major CW.: Internal heavy metal changes as a consequence of exposure of Mytilus edulis, the blue mussel, to elevated external copper (II) levels. Comp Biochem Physiol 68C: 63-67, 1981.
29 Wen-Xiong Wang, Nicholas S. Fisher: Delineating metal accumulation pathways for marine invertebrates The Science of The Total Environment, Volumes 237: 459-472, 1999.
30 Wong, P.P.K., L.M. Chu and C.K. Wong: Study of toxicity and bioaccumulation of copper in the silver sea bream Sparus sarba. Environ. Int., 25: 417-422, 1999.   DOI   ScienceOn
31 Zar J.H.: Biostatistical Analysis. Prentice Hall, London, 662, 1996.
32 강주찬, 김재원, 김성길, 황운기: 구리 노출에 따른 넙치, Paralichthys olivaceus 치어의 만성독성. 한국환경생물학회지, 21-1: 36-41, 2003.   과학기술학회마을