• Title/Summary/Keyword: bio assay

Search Result 702, Processing Time 0.022 seconds

The Effect of Bacillus-Fermented Scutellariae Radix Acupuncture Solution on Interleukin Production in Mouse Macrophage Stimulated by Lipopolysaccharide (바실러스균 발효황금약침액이 Lipopolysaccharide로 활성화된 마우스 대식세포의 인터루킨 생성에 미치는 영향)

  • Park, Wan-Su
    • Korean Journal of Acupuncture
    • /
    • v.27 no.2
    • /
    • pp.95-105
    • /
    • 2010
  • Objectives : The purpose of this study is to investigate the effect of Bacillus-fermented Scutellariae Radix acupuncture solution (SB) on interleukin(IL) production in mouse macrophage stimulatedby lipopolysaccaride(LPS). Methods : Productions of interleukins were measured y High-throughput Multiplex Bead based Assay with Bio-plex Suspension Array System based on $xMAP^{(R)}$(multi-analyte profiling beads) technology. To begin with, cell culture supernatant was obtained after treatment with LPS(1 ${\mu}g/mL$) and SB for 24 hour. Then, it was incubated with the antibody-conj${\mu}g$ated beads for 30 minutes. And detection antibody was added and incubated for 30 minutes. After incubating for 30 minutes, Strepavidin-conjugated Phycoerythrin(SAPE) was then added. Incubating for another 30 minutes, the level of SAPE fluorescence was analyzed on Bio-plex Suspension Array System. Results : The results of the experiment are as follows. SB significantly inhibited the LPS-induced production of IL-3($9.15{\pm}0.35$ pg/mL) by $6.92{\pm}0.05,\;7.21{\pm}0.11,\;6.96{\pm}0.33,\;and\;7.45{\pm}0.74$ pg/mL at the concentration of 25, 50, 100, and 200 ${\mu}g/mL$ in mouse macrophage RAW 264.7 cells (p<0.05). SB significantly inhibited the LPS-induced production of IL-5($7.30{\pm}0.48$ pg/mL) by $6.50{\pm}0.29,\;6.30{\pm}0.25,\;6.30{\pm}0.25,\;and\;5.80{\pm}0.25$ pg/mL at the concentration of 25, 50 100, and 200 ${\mg}g/mL$ in RAW 264.7 cells (p<0.05). SB significantly inhibited the LPS-induced productiion of IL-9($17.26{\pm}0.19$ pg/mL) by $15.01{\pm}0.43$ pg/mL at the concentration of 25 ${\mu}g/mL$ in RAW 264.7 cells(p<0.05). SB significantly inhibited the LPS-induced productioh of IL-13($187.80{\pm}2.90$ pg/mL) by $152.80{\pm}4.25,\;172.80{\pm}3.97,\;162.10{\pm}6.67,\;and\;165.30{\pm}11.80$ pg/mL at the concentration fo 25, 50, 100, and 200 ${\mu}g/mL$ in RAW 264.7 cells(p<0.05). SB significantly inhibited the LPS-induced production of IL-17($18.30{\pm}0.95$ pg/mL) by $13.30{\pm}1.25,\;13.80{\pm}1.11,\;13.30{\pm}0.75,\;and\;14.00{\pm}1.08$ pg/mL at the concentration of 25, 50 100, and 200 ${\mu}g/mL$ in RAW 264.7 cells(p<0.05). SB significantly inhibited the LPS-induced production of IL-23($43.90{\pm}0.83$ pg/mL by $39.50{\pm}1.26,\;38.00{\pm}1.78,\;and\;39.60{\pm}2.49$ pg/mL at the concentration of 25, 100, and 200 ${\mu}g/mL$ in RAW 264.7 cells(p<0.05). Conclusions : These results suggest that SB has anti-inflammatory activity related with its inhibition of IL-3, IL-5, IL-13, IL-17, and IL-23 production in macrophages.

Selection and Antifungal Activity of Antagonistic Bacterium Bacillus subtilis KMU-13 against Cucumber scab, Cladosporium cucumerinum KACC 40576 (검은별무늬병균 Cladosporium cucumerinum KACC 40576에 대한 길항균주 Bacillus subtilis KMU-13의 선발 및 항진균 활성)

  • Park Sung-Min;Lee Jun-Seuk;Park Chi-Duck;Lee Jung-Hun;Jung Hyuck-Jun;Yu Tae-Shick
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.42-48
    • /
    • 2006
  • Bacillus subtilis KMU-13 was isolated from the Lillehammer forest soils at Norway and shown a strong antifungal activity on cucumber scab, Cladosporium cucumerinum KACC 40576. B. subtilis KMU-13 produced a maximum level of antifungal substance under incubation aerobically at $30^{\circ}C$, 180 rpm for 48 hours in LB broth containing 0.5% maltose and 0.5% bactopeptone and initial pH adjusted to 6.0. Butanol extract of cultured broth was confirmed inhibitory zone by plate assay and Rf 0.64 value substance by thin layer chromatography (TLC) represented high antifungal activity against C. cucumerinum KACC 40576 and also shown fungal growth inhibitory activity against Botytis cinerea KACC 40573, C. gloeosporioides KACC 40804, D. byoniae KACC 40669, F. oxysporum KACC 40037, F. oxysporum KACC 40052, F. oxysporum f. sp. radicis-lycopersici KACC 40537, F. oxysporum KACC 40902, M. cannonballus KACC 40940, P. cambivora KACC 40160, R. soiani AG-1 KACC 40101, R. solani AG-4 KACC 40142, and S. scleotiorum KACC by agar diffusion method.

Effects of Pear Extracts Cultured Under Conventional and Environment-friendly Conditions on Cell Proliferation in Rat Hepatocytes (친환경 배 및 관행재배 배 추출물이 간세포 성장에 미치는 효과)

  • Yoon, Byung-Chul;Kim, Kil-Yong;Park, Soo-Hyun
    • Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.233-237
    • /
    • 2006
  • In the present study, we compared the functional analysis of pear extracts cultured in conventional and environment-friendly conditions in primary cultured rat hepatocytes. ATP synthesis significantly increased by the treatment with environment friendly cultured pear powder but not by conventional group. In addition, cell proliferation using $[^3H]$-thymidine incorporation was also stimulated by environment-friendly cultured pear extract compared to conventional group. Moreover, the expressions of CDK-2 and CDK-4 were increased but p21WAF1/Cip1 and p27 Kip1 decreased by environment-friendly cultured pear extract but not by conventional group. In conclusion, environment-friendly cultured pear powder has stimulatory effect on cell proliferation compared to conventional group in primary cultured rat hepatocytes.

A Conserved Mechanism for Binding of p53 DNA-Binding Domain and Anti-Apoptotic Bcl-2 Family Proteins

  • Lee, Dong-Hwa;Ha, Ji-Hyang;Kim, Yul;Jang, Mi;Park, Sung Jean;Yoon, Ho Sup;Kim, Eun-Hee;Bae, Kwang-Hee;Park, Byoung Chul;Park, Sung Goo;Yi, Gwan-Su;Chi, Seung-Wook
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.264-269
    • /
    • 2014
  • The molecular interaction between tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins plays an essential role in the transcription-independent apoptotic pathway of p53. In this study, we investigated the binding of p53 DNA-binding domain (p53DBD) with the anti-apoptotic Bcl-2 family proteins, Bcl-w, Mcl-1, and Bcl-2, using GST pull-down assay and NMR spectroscopy. The GST pull-down assays and NMR experiments demonstrated the direct binding of the p53DBD with Bcl-w, Mcl-1, and Bcl-2. Further, NMR chemical shift perturbation data showed that Bcl-w and Mcl-1 bind to the positively charged DNA-binding surface of p53DBD. Noticeably, the refined structural models of the complexes between p53DBD and Bcl-w, Mcl-1, and Bcl-2 showed that the binding mode of p53DBD is highly conserved among the anti-apoptotic Bcl-2 family proteins. Furthermore, the chemical shift perturbations on Bcl-w, Mcl-1, and Bcl-2 induced by p53DBD binding occurred not only at the p53DBD-binding acidic region but also at the BH3 peptide-binding pocket, which suggests an allosteric conformational change similar to that observed in Bcl-$X_L$. Taken altogether, our results revealed a structural basis for a conserved binding mechanism between p53DBD and the anti-apoptotic Bcl-2 family proteins, which shed light on to the molecular understanding of the transcription-independent apoptosis pathway of p53.

Study of the mechanisms underlying increased glucose absorption in Smilax china L. leaf extract-treated HepG2 cells (청미래덩굴 잎 물추출물이 처리된 HepG2 세포에서의 포도당흡수기전 연구)

  • Kang, Yun Hwan;Kim, Dae Jung;Kim, Kyoung Kon;Lee, Sung Mee;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.47 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • Purpose: Previous studies have shown that treatment with Smilax china L. leaf extract (SCLE) produces antidiabetic effects due to ${\alpha}$-glucosidase inhibition. In this study, we examined the mechanism underlying these antidiabetic effects by examining glucose uptake in HepG2 cells cultured with SCLE. Methods: Glucose uptake and glucokinase activity were examined using an assay kit. Expression of glucose transporter (GLUT)-2, GLUT-4, and HNF-$1{\alpha}$ was measured by RT-PCR or western blot. Results: Treatment with SCLE resulted in enhanced glucose uptake in HepG2 cells, and this effect was especially pronounced when cells were cultured in an insulin-free medium. SCLE induced an increase in expression of GLUT-2 but not GLUT-4. The increase in the levels of HNF-$1{\alpha}$, a GLUT-2 transcription factor, in total protein extract and nuclear fraction suggest that the effects of SCLE may occur at the level of GLUT-2 transcription. In addition, by measuring the change in glucokinase activity following SCLE treatment, we confirmed that SCLE stimulates glucose utilization by direct activation of this enzyme. Conclusion: These results demonstrate that the potential antidiabetic activity of SCLE is due at least in part to stimulation of glucose uptake and an increase in glucokinase activity, and that SCLE-stimulated glucose uptake is mediated through enhancement of GLUT-2 expression by inducing expression of its transcription factor, HNF-$1{\alpha}$.

Effects of anti-inflammatory on Perilla frutescens var. crispa Induced by mutants with γ-Ray (감마선을 이용한 육종 차조기의 항염증 효과)

  • Sim, Boo-Yong;Park, Jung-Hyun;Kim, Sung-Kyu;Ji, Joong-Gu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.488-497
    • /
    • 2019
  • The purpose of this study was to confirmed anti-inflammatory effect the apple Induced by mutants with ${\gamma}-Ray$ extract. Cell viability was assessed by MTT assay using RAW 264.7 cells. The extracts measured through changes in the levels of reactive oxygen species (ROS), nitric oxide (NO), inflammatory cytokines, NF-kB, and COX-2 on LPS-induced RAW 264.7 cells. All test results were analyzed by ELISA reader, Luminex and RT-PCR. In result, the extracts was not toxic below in 25 ug/ml, and extracts was inhibited the productions nitric oxide, ROS, cytokines (IL-1b, IL-6, TNF-a), NF-kB and COX-2 in LPS-induced RAW 264.7 cells. Also, the expression levels were decreased on mRNA of $NF-{\kappa}B$ and COX-2. In other words, Perilla frutescens var. crispa Induced by mutants with ${\gamma}-Ray$ extracts showed significant anti-inflammatory effect. These results may be developed as a raw material for new health food and therapeutics to ease the related to the above mediators.

Inhibitory Effect of the Ethanol Extract of Rudbeckia laciniata var. hortensis Bailey on Adipocyte Differentiation in 3T3-L1 Cells (겹삼잎국화 에탄올 추출물의 지방세포 분화 억제 효과)

  • Nam, Gun He;Wee, Ji-Hyang;Kim, Sang Yung;Baek, Ji-Young;Kim, Young Min
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1152-1158
    • /
    • 2019
  • Rudbeckia laciniata var. hortensis Bailey is used in home remedy for colic and gastritis in South Korea. Although Rudbeckia laciniata var. hortensis Bailey is used extensively for home remedies, no single study on its efficacy exists. In this study, we investigated the anti-obesity effects of Rudbeckia laciniata var. hortensis Bailey. The anti-obesity effect of a 70% ethanol extract from Rudbeckia laciniata var. hortensis Bailey on the differentiation of 3T3-L1 pre-adipocytes to adipocytes was investigated with an Oil Red O assay, western blot analysis, and mRNA analysis. Compared to the control (only treated with DM), the 70% ethanol extract of Rudbeckia laciniata var. hortensis Bailey significantly inhibited adipocyte differentiation and intracellular triglyceride (TG) levels at a concentration of $100{\mu}g/ml$. To determine how the TG content was reduced, we measured the level of protein and mRNA expression of obesityrelated agents, such as peroxisome proliferators-activated receptor ${\gamma}$ ($PPAR{\gamma}$), CCAAT/enhancer- binding protein ${\alpha}$ ($C/EBP{\alpha}$), AMP-activated protein kinase (AMPK) phosphorylation, LPL, and FAS. As a result, the 70% ethanol extract of Rudbeckia laciniata var. hortensis Bailey significantly increased the expression of AMPK and decreased the expression of genes related to adipogenesis and fat storage, such as $PPAR{\gamma}$, $C/EBP{\alpha}$, LPL, and FAS.

Antiaging Activity of Mixed Extracts from Korean Medicinal Herbs on HS68 Skin Fibroblast (한약재복합 추출물의 인간피부섬유아세포 HS68에 대한 항노화 효과)

  • Shin, Dong-Chul;Kim, Gwui-Cheol;Song, Si-Young;Kim, Hee-Jin;Yang, Jae-Chan;Lee, Yong-Hwa;Kim, Bo-Ae
    • The Korea Journal of Herbology
    • /
    • v.29 no.2
    • /
    • pp.39-45
    • /
    • 2014
  • Objectives : The purpose of this study was to investigate antiaging and antioxidant effects on cultured human skin fibroblast with 80% ethanol extracts of plants including of stem of Dendropanax morbifera, Corni fructus and Lycii Fructus. Methods : An ethanol extract of three medicinal plants including stem of Dendropanax morbifera, Corni fructus and Lycii Fructus. Extracts were assessed to determine the mechanism of antioxidant and antiaging activities. Antioxidant activity of extract was evaluated by two different assays as 2,2-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and super oxide dismutase (SOD) like activities. These extracts were tested for cell viability on HS68 skin fibroblast by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. We investigated the effects of Ultraviolet-B irradiation on cytotoxicity, type 1 collagen, elastin level and oxidative damage in cultured human skin fibroblast (HS68). Recently, many studies have reported that elastin is also involved in inhibiting or repairing wrinkle formation, although collagen is a major factor in the skin wrinkle formation. Results : The extracts obtained dose-dependently increased the scavenging activity on DPPH radical scavenging activity and SOD like activity. The extracts of complex herbal medicine showed low cytotoxicity as more than 100% cell viability in 100ppm/ml concentration. HS68 fibroblasts were survived 70% at 120 $mJ/cm^2$ UVB irradiation and treated tumor necrosis factor (TNF)-alpha. The levels of aging factors and cytotoxicity were decreased by ethanol extract of complex herbal medicine. Conclusions : These results suggest that ethanol extracts of complex medicinal plants of including of stem of Dendropanax morbifera, Corni fructus and Lycii Fructus may have value as the potential antioxidant and antiaging medicinal plant.

Isolation and characterization of cellulolytic yeast belonging to Moesziomyces sp. from the gut of Grasshopper (메뚜기의 내장에서 분리한 Moesziomyces 속에 속하는 셀룰로오스 분해 효모의 분리 및 특성)

  • Kim, Ju-Young;Jung, Hee-Young;Park, Jong-Seok;Cho, Sung-Jin;Lee, Hoon Bok;Sung, Gi-Ho;Subramani, Gayathri;Kim, Myung Kyum
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.234-241
    • /
    • 2019
  • An intensive interaction between yeasts and insects has highlighted their relevance for attraction to food and for the insect's development and behavior. Yeast associated in the gut of insects secretes cellulase which aided in the food digestion (cellulose degradation). Three strains of cellulose-degrading yeast were isolated from the gut of adult grasshoppers collected in Gyeonggi Province, South Korea. The strains $ON22^T$, $G10^T$, and $G15^T$, showed positive cellulolytic activity in the carboxymethyl cellulose (CMC)-plate assay. The phylogenetic tree based on sequence analysis of D1/D2 domains of the large subunit rRNA gene and the internal transcribed spacer (ITS) regions revealed that the strains $ON22^T$ (100 and 98.4% sequence similarities in D1/D2 domains and ITS) and $G10^T$ (99.8 and 99.5% in D1/D2 domain and ITS region) were most closely related to the species Moesziomyces aphidis JCM $10318^T$; $G15^T$ (100% in D1/D2 domains and ITS) belongs to the species Moesziomyces antarcticus JCM $10317^T$, respectively. Morphology and biochemical test results are provided in the species description. Cellulase with its massive applicability has been used in various industrial processes such as biofuels like bioethanol productions. Therefore, this is the first report of the cellulolytic yeast strains $ON22^T$, $G10^T$, and $G15^T$ related to the genus Moesziomyces in the family Ustilaginaceae (Ustilaginales), in Korea.

Cellulose degrading basidiomycetes yeast isolated from the gut of grasshopper in Korea (한국의 메뚜기의 장에서 분리된 Cellulose를 분해하는 담자균 효모)

  • Kim, Ju-Young;Jang, Jun Hwee;Park, Ji-Hyun;Jung, Hee-Young;Park, Jong-Seok;Cho, Sung-Jin;Lee, Hoon Bok;Limtong, Savitree;Subramani, Gayathri;Sung, Gi-Ho;Kim, Myung Kyum
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.362-368
    • /
    • 2018
  • Grasshoppers play vital role in the digestion of photosynthetically fixed carbons. With the aid of intestinal microflora, the grasshopper can degrade leaves constituents such as cellulose and hemicellulose. The purpose of this study was to examine cellulolytic yeast isolates from the gut of grasshoppers collected in Gyeonggi Province, South Korea. Among the yeast isolates, ON2, ON17 (two strains), and ON6 (one strain) showed positive cellulolytic activity in the CMC-plate assay. The sequence analyses of D1/D2 domains of the large subunit rDNA gene and the internal transcribed spacer (ITS) regions revealed that the strains ON2 and ON17 were most closely related to Papiliotrema aspenensis CBS $13867^T$ (100%, sequence similarity in D1/D2 domains; 99.4% sequence similarity in ITS) and strain ON6 related to Saitozyma flava (100% in D1/D2 domains; 99.0% in ITS). All these three yeast strains are capable of degrading cellulose; therefore, the members of endosymbiotic yeasts may produce their own enzymes for carbohydrate degradation and convert mobilized sugar monomers to volatile fatty acids. Thus, the endosymbiotic yeast strains ON2, ON17 (represents the genus Papilioterma) and ON6 (Saitozyma) belonging to the family Tremellomycetes, are unreported strains in Korea.