Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0001

A Conserved Mechanism for Binding of p53 DNA-Binding Domain and Anti-Apoptotic Bcl-2 Family Proteins  

Lee, Dong-Hwa (Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
Ha, Ji-Hyang (Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Yul (Department of Bio and Brain Engineering, Korea Advanced Institute for Science and Technology)
Jang, Mi (Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
Park, Sung Jean (College of Pharmacy, Gachon University)
Yoon, Ho Sup (Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University)
Kim, Eun-Hee (Division of Magnetic Resonance, Korea Basic Science Institute)
Bae, Kwang-Hee (Research Center for Integrated Cellulomics, Korea Research Institute of Bioscience and Biotechnology)
Park, Byoung Chul (Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
Park, Sung Goo (Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
Yi, Gwan-Su (Department of Bio and Brain Engineering, Korea Advanced Institute for Science and Technology)
Chi, Seung-Wook (Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
Abstract
The molecular interaction between tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins plays an essential role in the transcription-independent apoptotic pathway of p53. In this study, we investigated the binding of p53 DNA-binding domain (p53DBD) with the anti-apoptotic Bcl-2 family proteins, Bcl-w, Mcl-1, and Bcl-2, using GST pull-down assay and NMR spectroscopy. The GST pull-down assays and NMR experiments demonstrated the direct binding of the p53DBD with Bcl-w, Mcl-1, and Bcl-2. Further, NMR chemical shift perturbation data showed that Bcl-w and Mcl-1 bind to the positively charged DNA-binding surface of p53DBD. Noticeably, the refined structural models of the complexes between p53DBD and Bcl-w, Mcl-1, and Bcl-2 showed that the binding mode of p53DBD is highly conserved among the anti-apoptotic Bcl-2 family proteins. Furthermore, the chemical shift perturbations on Bcl-w, Mcl-1, and Bcl-2 induced by p53DBD binding occurred not only at the p53DBD-binding acidic region but also at the BH3 peptide-binding pocket, which suggests an allosteric conformational change similar to that observed in Bcl-$X_L$. Taken altogether, our results revealed a structural basis for a conserved binding mechanism between p53DBD and the anti-apoptotic Bcl-2 family proteins, which shed light on to the molecular understanding of the transcription-independent apoptosis pathway of p53.
Keywords
apoptosis; Bcl-2 family proteins; binding mechanism; DNA-binding domain; p53;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Chen, R., Li, L., and Weng, Z. (2003). ZDOCK: an initial-stage protein-docking algorithm. Proteins 52, 80-87.   DOI   ScienceOn
2 Adams, J.M., and Cory, S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science (New York, N.Y) 281, 1322-1326.   DOI   ScienceOn
3 Adams, J.M., and Cory, S. (2007). The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324-1337.   DOI   ScienceOn
4 Brown, C.J., Lain, S., Verma, C.S., Fersht, A.R., and Lane, D.P. (2009). Awakening guardian angels: drugging the p53 pathway. Nat. Rev. 9, 862-873.   DOI   ScienceOn
5 Chi, S.W. (2014). Structural insights into the transcription-independent apoptotic pathway of p53. BMB Rep. pii: 2593. [Epub ahead of print]
6 Chipuk, J.E., Kuwana, T., Bouchier-Hayes, L., Droin, N.M., Newmeyer, D.D., Schuler, M., and Green, D.R. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010-1014.   DOI   ScienceOn
7 Chipuk, J.E., Bouchier-Hayes, L., Kuwana, T., Newmeyer, D.D., and Green, D.R. (2005). PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309, 1732-1735.   DOI   ScienceOn
8 Denisov, A.Y., Madiraju, M.S., Chen, G., Khadir, A., Beauparlant, P., Attardo, G., Shore, G.C., and Gehring, K. (2003). Solution structure of human BCL-w: modulation of ligand binding by the Cterminal helix. J. Biol. Chem. 278, 21124-21128.   DOI   ScienceOn
9 Danial, N.N. (2007). BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin. Cancer Res. 13, 7254-7263.   DOI   ScienceOn
10 Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., and Bax, A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277-293.
11 DeLano, W.L. (2002). The PyMOL Molecular Graphics System; in PyMOL (DeLano Scientific).
12 Ding, X., Yang, Z., Zhou, F., Hu, X., Zhou, C., Luo, C., He, Z., Liu, Q., Li, H., Yan, F., et al. (2012). Human intersectin 2 (ITSN2) binds to Eps8 protein and enhances its degradation. BMB Rep. 45, 183-188.   DOI   ScienceOn
13 Ha, J.H., Won, E.Y., Shin, J.S., Jang, M., Ryu, K.S., Bae, K.H., Park, S.G., Park, B.C., Yoon, H.S., and Chi, S.W. (2011). Molecular mimicry-based repositioning of nutlin-3 to anti-apoptotic Bcl-2 family proteins. J. Am. Chem. Soc. 133, 1244-1247.   DOI   ScienceOn
14 Fesik, S.W. (2005). Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. 5, 876-885.   DOI   ScienceOn
15 Green, D.R., and Kroemer, G. (2009). Cytoplasmic functions of the tumour suppressor p53. Nature 458, 1127-1130.   DOI   ScienceOn
16 Ha, J., Won, E., Yoon, H., Kang, S., Bae, K., Park, S., Park, B., Choi, B., Lee, J., and Chi, S. (2009). Molecular Interaction between a Bcl-2 homolog from Kaposi sarcoma virus and p53. Bull. Korean Chem. Soc. 30, 1655.   DOI   ScienceOn
17 Ha, J.H., Shin, J.S., Yoon, M.K., Lee, M.S., He, F., Bae, K.H., Yoon, H.S., Lee, C.K., Park, S.G., Muto, Y., et al. (2013). Dual-site interactions of p53 protein transactivation domain with antiapoptotic Bcl-2 family proteins reveal a highly convergent mechanism of divergent p53 pathways. J. Biol. Chem. 288, 7387-7398.   DOI   ScienceOn
18 Hagn, F., Klein, C., Demmer, O., Marchenko, N., Vaseva, A., Moll, U.M., and Kessler, H. (2010). BclxL changes conformation upon binding to wild-type but not mutant p53 DNA binding domain. J. Biol. Chem. 285, 3439-3450.   DOI   ScienceOn
19 Harris, S.L., and Levine, A.J. (2005). The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899-2908.   DOI   ScienceOn
20 Jiang, P., Du, W., Heese, K., and Wu, M. (2006). The Bad guy cooperates with good cop p53: Bad is transcriptionally up-regulated by p53 and forms a Bad/p53 complex at the mitochondria to induce apoptosis. Mol. Cell Biol. 26, 9071-9082.   DOI   ScienceOn
21 Matissek, K.J., Mossalam, M., Okal, A., and Lim, C.S. (2013). The DNA binding domain of p53 is sufficient to trigger a potent apoptotic response at the mitochondria. Mol. Pharm. 10, 3592-3602.   DOI
22 Lee, D.H., Ha, J.H., Kim, Y., Bae, K.H., Park, J.Y., Choi, W.S., Yoon, H.S., Park, S.G., Park, B.C., Yi, G.S., et al. (2011). Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy. Biochem. Biophys. Res. Commun. 408, 541-547.   DOI   ScienceOn
23 Lessene, G., Czabotar, P.E., and Colman, P.M. (2008). BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug Discov. 7, 989-1000.   DOI   ScienceOn
24 Leu, J.I., Dumont, P., Hafey, M., Murphy, M.E., and George, D.L. (2004). Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat. Cell Biol. 6, 443-450.   DOI   ScienceOn
25 Shin, J.S., Ha, J.H., and Chi, S.W. (2013). Targeting of p53 peptide analogues to anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy. Biochem. Biophys. Res. Commun. 443, 882-887.
26 Petros, A.M., Olejniczak, E.T., and Fesik, S.W. (2004). Structural biology of the Bcl-2 family of proteins. Biochim. Biophys. Acta 1644, 83-94.   DOI   ScienceOn
27 Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., and Moll, U.M. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577-590.   DOI   ScienceOn
28 Moll, U.M., Wolff, S., Speidel, D., and Deppert, W. (2005). Transcription-independent pro-apoptotic functions of p53. Curr. Opin. Cell Biol. 17, 631-636.   DOI   ScienceOn
29 Rajagopalan, S., Andreeva, A., Rutherford, T.J., and Fersht, A.R. (2010). Mapping the physical and functional interactions between the tumor suppressors p53 and BRCA2. Proc. Natl. Acad. Sci. USA 107, 8587-8592.   DOI   ScienceOn
30 Shin, J.S., Ha, J.H., He, F., Muto, Y., Ryu, K.S., Yoon, H.S., Kang, S., Park, S.G., Park, B.C., Choi, S.U., et al. (2012). Structural insights into the dual-targeting mechanism of Nutlin-3. Biochem. Biophys. Res. Commun. 420, 48-53.   DOI   ScienceOn
31 Sot, B., Freund, S.M., and Fersht, A.R. (2007). Comparative biophysical characterization of p53 with the pro-apoptotic BAK and the anti-apoptotic BCL-xL. J. Biol. Chem. 282, 29193-29200.   DOI   ScienceOn
32 Stoll, R., Renner, C., Hansen, S., Palme, S., Klein, C., Belling, A., Zeslawski, W., Kamionka, M., Rehm, T., Muhlhahn, P., et al. (2001). Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry 40, 336-344.   DOI   ScienceOn
33 Vousden, K.H., and Lu, X. (2002). Live or let die: the cell's response to p53. Nat. Rev. Cancer 2, 594-604.   DOI   ScienceOn
34 Tomita, Y., Marchenko, N., Erster, S., Nemajerova, A., Dehner, A., Klein, C., Pan, H., Kessler, H., Pancoska, P., and Moll, U.M. (2006). WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J. Biol. Chem. 281, 8600-8606.   DOI   ScienceOn
35 Vaseva, A.V., and Moll, U.M. (2009). The mitochondrial p53 pathway. Biochim. Biophys. Acta 1787, 414-420.   DOI   ScienceOn
36 Vogelstein, B., Lane, D., and Levine, A.J. (2000). Surfing the p53 network. Nature 408, 307-310.   DOI   ScienceOn
37 Yao, H., Mi, S., Gong, W., Lin, J., Xu, N., Perrett, S., Xia, B., Wang, J., and Feng, Y. (2013). Anti-apoptosis proteins Mcl-1 and BclxL have different p53-binding profiles. Biochemistry 52, 6324-6334.   DOI   ScienceOn
38 Wang, R., Shen, J., Huang, P., and Zhu, X. (2013). CCCTC-binding factor controls its own nuclear transport via regulating the expression of importin 13. Mol. Cells 35, 388-395.   DOI
39 Wong, K.B., DeDecker, B.S., Freund, S.M., Proctor, M.R., Bycroft, M., and Fersht, A.R. (1999). Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc. Natl. Acad. Sci. USA 96, 8438-8442.   DOI
40 Xu, H., Ye, H., Osman, N.E., Sadler, K., Won, E.Y., Chi, S.W., and Yoon, H.S. (2009). The MDM2-binding region in the transactivation domain of p53 also acts as a Bcl-X(L)-binding motif. Biochemistry 48, 12159-12168.   DOI   ScienceOn
41 Yoon, I.S., Chung, J.H., Hahm, S.H., Park, M.J., Lee, Y.R., Ko, S.I., Kang, L.W., Kim, T.S., Kim, J., and Han, Y.S. (2011). Ribosomal protein S3 is phosphorylated by Cdk1/cdc2 during G2/M phase. BMB Rep. 44, 529-534.   DOI   ScienceOn
42 Youle, R.J., and Strasser, A. (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9, 47-59.   DOI   ScienceOn
43 Yu, G.W., Rudiger, S., Veprintsev, D., Freund, S., Fernandez-Fernandez, M.R., and Fersht, A.R. (2006). The central region of HDM2 provides a second binding site for p53. Proc. Natl. Acad. Sci. USA 103, 1227-1232.   DOI   ScienceOn
44 Czabotar, P.E., Lee, E.F., van Delft, M.F., Day, C.L., Smith, B.J., Huang, D.C., Fairlie, W.D., Hinds, M.G., and Colman, P.M. (2007). Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc. Natl. Acad. Sci. USA 104, 6217-6222.   DOI   ScienceOn
45 Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C.C. (1991). p53 mutations in human cancers. Science (New York, N.Y) 253, 49-53.   DOI
46 Petros, A.M., Medek, A., Nettesheim, D.G., Kim, D.H., Yoon, H.S., Swift, K., Matayoshi, E.D., Oltersdorf, T., and Fesik, S.W. (2001). Solution structure of the antiapoptotic protein bcl-2. Proc. Natl. Acad. Sci. USA 98, 3012-3017.   DOI   ScienceOn