DOI QR코드

DOI QR Code

Cellulose degrading basidiomycetes yeast isolated from the gut of grasshopper in Korea

한국의 메뚜기의 장에서 분리된 Cellulose를 분해하는 담자균 효모

  • Kim, Ju-Young (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Jang, Jun Hwee (College of Agricultural and Life Sciences, Kyungpook National University) ;
  • Park, Ji-Hyun (Institute for Healthcare and Life Science, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University) ;
  • Jung, Hee-Young (College of Agricultural and Life Sciences, Kyungpook National University) ;
  • Park, Jong-Seok (School of Biological Sciences, College of Natural Sciences, Chungbuk National University) ;
  • Cho, Sung-Jin (School of Biological Sciences, College of Natural Sciences, Chungbuk National University) ;
  • Lee, Hoon Bok (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Limtong, Savitree (Department of Microbiology, Faculty of Science, Kasetsart University) ;
  • Subramani, Gayathri (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Sung, Gi-Ho (Institute for Healthcare and Life Science, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University) ;
  • Kim, Myung Kyum (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University)
  • 김주영 (서울여자대학교 자연과학대학 생명환경공학과) ;
  • 장준휘 (경북대학교 농업생명과학대학) ;
  • 박지현 (가톨릭관동대학교 의과대학 성메리병원 보건의학과) ;
  • 정희영 (경북대학교 농업생명과학대학) ;
  • 박종석 (충북대학교 자연과학대학 생명과학부) ;
  • 조성진 (충북대학교 자연과학대학 생명과학부) ;
  • 이훈복 (서울여자대학교 자연과학대학 생명환경공학과) ;
  • ;
  • ;
  • 성기호 (가톨릭관동대학교 의과대학 성메리병원 보건의학과) ;
  • 김명겸 (서울여자대학교 자연과학대학 생명환경공학과)
  • Received : 2018.11.05
  • Accepted : 2018.11.20
  • Published : 2018.12.31

Abstract

Grasshoppers play vital role in the digestion of photosynthetically fixed carbons. With the aid of intestinal microflora, the grasshopper can degrade leaves constituents such as cellulose and hemicellulose. The purpose of this study was to examine cellulolytic yeast isolates from the gut of grasshoppers collected in Gyeonggi Province, South Korea. Among the yeast isolates, ON2, ON17 (two strains), and ON6 (one strain) showed positive cellulolytic activity in the CMC-plate assay. The sequence analyses of D1/D2 domains of the large subunit rDNA gene and the internal transcribed spacer (ITS) regions revealed that the strains ON2 and ON17 were most closely related to Papiliotrema aspenensis CBS $13867^T$ (100%, sequence similarity in D1/D2 domains; 99.4% sequence similarity in ITS) and strain ON6 related to Saitozyma flava (100% in D1/D2 domains; 99.0% in ITS). All these three yeast strains are capable of degrading cellulose; therefore, the members of endosymbiotic yeasts may produce their own enzymes for carbohydrate degradation and convert mobilized sugar monomers to volatile fatty acids. Thus, the endosymbiotic yeast strains ON2, ON17 (represents the genus Papilioterma) and ON6 (Saitozyma) belonging to the family Tremellomycetes, are unreported strains in Korea.

메뚜기는 광합성으로 고정된 탄소의 소화에서 중요한 역할을 한다. 장내 미생물 군의 도움으로, 메뚜기는 셀룰로오스 및 헤미셀룰로오스와 같은 잎의 성분을 분해할 수 있다. 본 연구는 한국의 기도에서 수집한 메뚜기 껍질에서 추출한 셀룰로오스 분해 효모 균주를 조사하기 위해 이루어졌다. 효모 균주 중 ON2와 ON17 (두 균주)과 ON6 (한 균주)는 CMC-플레이트 분석에서 셀룰로오스 활성을 보였다. Large subunit rDNA의 D1/D2영역의 서열과 internal transcribed spacer (ITS) 영역의 분석 결과, ON2와 ON17 균주가 Papiliotrema aspenensis CBS $13867^T$와 가장 밀접하게 관련되어 있었고(D1/D2 영역의 서열 유사성은 100% ITS에서 99.4%의 서열 유사성) ON6 균주는 Saitozyma flava와 관련된(D1/D2영역에서 100%, ITS에서 99.0%) 밀접하게 관련이 있었다. 이 세 가지 효모 균주는 모두 셀룰로오스를 분해할 수 있으므로 공생하는 효모들은 탄수화물 분해를 위한 효소를 자체적으로 생산하고 당 단당체를 휘발성 지방산으로 전환시킬 수 있다. Tremellomycetes에 속하는 공생 효모 균주인 ON2, ON17 (Papilioterma 속)과 ON6 (Saitozyma속)은 한국에는 보고되지 않은 균주이다.

Keywords

MSMHBQ_2018_v54n4_362_f0001.png 이미지

Fig. 1. Cell morphology on YM agar after 3 days at 25°C.

MSMHBQ_2018_v54n4_362_f0002.png 이미지

Fig. 2. Phylogenetic tree based on the concatenated sequences of the ITS regions and LSU D1/D2 domain of strain ON2, ON17, and ON6 with the members of closely related taxa.

MSMHBQ_2018_v54n4_362_f0003.png 이미지

Fig. 3. CMC-plate assay showing cellulolytic activities of strains ON2,ON17, and ON6 with control.

Table 1. Physiological and biochemical tests capable of showing similarity between strains of ON2, ON17, and Papilioterma aspenensis

MSMHBQ_2018_v54n4_362_t0001.png 이미지

Table 2. Physiological and biochemical tests capable of showing similarity between strains of ON6 and Saitozyma flava

MSMHBQ_2018_v54n4_362_t0002.png 이미지

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, and Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Cubero F, Crespo A, Fatehi J, and Bridge DP. 1998. DNA extraction and PCR amplification method suitable for fresh, herbariumstored, lichenized, and other fungi. Plant Sys. Evol. 216, 243-249.
  3. Dashtban M, Maki M, Leung KT, Mao C, and Qin W. 2010. Cellulase activities in biomass conversion: Measurement methods and comparison. Crit. Rev. Biotechnol. 30, 302-309. https://doi.org/10.3109/07388551.2010.490938
  4. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  5. Ferreira-Paim K, Ferreira TB, Andrade-Silva L, Mora DJ, Springer DJ, Heitman J, Fonseca FM, Matos D, Melhem MSC, and Silva-Vergara ML. 2014. Cryptococcus aspenensis. PLoS One 9, e108633. https://doi.org/10.1371/journal.pone.0108633
  6. Fonseca A, Boekhout T, and Fell JW. 2008. Validation of the basidiomycetous yeast species Cryptococcus flavus and C. liquefaciens. Mycotaxon 106, 503-504.
  7. Goldbeck R, Andrade CPP, Pereira GAG, and Maugeri Filho F. 2012. Screening and identification of cellulase producing yeast-like microorganisms from Brazilian biomes. Afr. J. Biotechnol. 11, 11595-11603.
  8. Ingram M. 1958. Yeasts in food spoilage. In Cook AH. (ed.), The chemistry and biology of yeasts. Academic Press, New York, USA.
  9. Joern A. 1985. Grasshopper dietary (Orthoptera: Acrididae) from a Nebraska sand hills prairie. Trans. Wis. Acad. Sci. 13, 21-32.
  10. Joern A and Appel HM. 1998. Gut physiochemistry of grassland grasshoppers. J. Insect. Physiol. 44, 693-700. https://doi.org/10.1016/S0022-1910(97)00122-4
  11. Johnsen HR and Krause K. 2014. Cellulase activity screening using pure carboxymethylcellulose: application to soluble cellulolytic samples and to plant tissue prints. Int. J. Mol. Sci. 15, 830-838. https://doi.org/10.3390/ijms15010830
  12. Kasana RC, Salwan R, Dhar H, Dutt S, and Gulati A. 2008. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram's iodine. Curr. Microbiol. 57, 503-507. https://doi.org/10.1007/s00284-008-9276-8
  13. Kumar S, Stecher G, and Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi.org/10.1093/molbev/msw054
  14. Kurtzman CP and Robnett CJ. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73, 331-371. https://doi.org/10.1023/A:1001761008817
  15. Kurtzman CP, Fell JW, Boekhout T, and Robert V. 2011. Chapter 7 - Methods for isolation, phenotypic characterization and maintenance of yeasts, pp. 87-110. In Kurtzman CP, Fell JW, and Boekhout T. (eds.), The yeasts 5th ed., Elsevier, London, UK.
  16. Lodder J. 1970. The yeasts: a taxonomic study, pp. 1-1385. Northholland publishing company, Amsterdam, The Netherlands.
  17. Percival Zhang YH, Hong J, and Ye X. 2009. Cellulase assays. Methods Mol. Biol. 581, 213-231.
  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, and Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  19. White TJ, Bruns T, Lee S, and Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In Innis MA, Gelfand DH, Shinsky JJ, and White TJ. (eds.), PCR Protocols: A guide to methods and applications, Academic Press. San Diego, USA.
  20. Yeoh HH, Khew E, and Lim G. 1985. A simple method for screening cellulolytic fungi. Mycologia 77, 161-162. https://doi.org/10.1080/00275514.1985.12025077
  21. Zhou B, Martin GJ, and Pamment NB. 2008. Increased phenotypic stability and ethanol tolerance of recombinant Escherichia coli KO11 when immobilized in continuous fluidized bed culture. Biotechnol. Bioeng. 100, 627-633. https://doi.org/10.1002/bit.21800

Cited by

  1. 지렁이(Eisenia andrei)의 장으로부터 분리한 국내 미기록 야생효모들의 균학적 특성과 탄소원 활성 vol.48, pp.2, 2020, https://doi.org/10.4489/kjm.20200017