• Title/Summary/Keyword: binomial statistics

Search Result 173, Processing Time 0.018 seconds

Tests for homogeneity of proportions in clustered binomial data

  • Jeong, Kwang Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.5
    • /
    • pp.433-444
    • /
    • 2016
  • When we observe binary responses in a cluster (such as rat lab-subjects), they are usually correlated to each other. In clustered binomial counts, the independence assumption is violated and we encounter an extra-variation. In the presence of extra-variation, the ordinary statistical analyses of binomial data are inappropriate to apply. In testing the homogeneity of proportions between several treatment groups, the classical Pearson chi-squared test has a severe flaw in the control of Type I error rates. We focus on modifying the chi-squared statistic by incorporating variance inflation factors. We suggest a method to adjust data in terms of dispersion estimate based on a quasi-likelihood model. We explain the testing procedure via an illustrative example as well as compare the performance of a modified chi-squared test with competitive statistics through a Monte Carlo study.

ON SOME MODELS LEADING TO QUASI-NEGATIVE-BINOMIAL DISTRIBUTION

  • Bilal, Sheikh;Hassan, Anwar
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.15-29
    • /
    • 2007
  • In this paper, we explore some interesting models of the quasi-negative-binomial distribution based on difference differential equations applicable to theory of microorganisms and the situations like that. Some characterizations based on conditional distributions and damage process have been obtained. Further, the distribution of number of accidents as the quasi-negative-binomial distribution in the light of Irwin's theory of ";proneness-liability"; model has been derived. Finally, the proposed model (QNBD) has been applied to study the Shunting accidents, home injuries, and strikes in industries.

  • PDF

Effects of Overdispersion on Testing for Serial Dependence in the Time Series of Counts Data

  • Kim, Hee-Young;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.829-843
    • /
    • 2010
  • To test for the serial dependence in time series of counts data, Jung and Tremayne (2003) evaluated the size and power of several tests under the class of INARMA models based on binomial thinning operations for Poisson marginal distributions. The overdispersion phenomenon(i.e., a variance greater than the expectation) is common in the real world. Overdispersed count data can be modeled by using alternative thinning operations such as random coefficient thinning, iterated thinning, and quasi-binomial thinning. Such thinning operations can lead to time series models of counts with negative binomial or generalized Poisson marginal distributions. This paper examines whether the test statistics used by Jung and Tremayne (2003) on serial dependence in time series of counts data are affected by overdispersion.

Maximum likelihood estimation for a mixture distribution (이항-퇴화 혼합분포의 최우추정법)

  • Hwang, Seonyeong;Sohn, Seung Hye;Oh, Changhyuck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.313-322
    • /
    • 2015
  • A mixture distribution of a discrete uniform or degenerated distribution and two binomial distribution is proposed and a method of obtaining the maximum likelihood estimates of the parameters is provided. For the proposed model simulation studies were conducted to see performance of the maximum likelihood estimates and a mixture of a degenerated distribution and two binomial distributions was applied to fit a lecture evaluation data to show a good result.

Interval Estimation for a Binomial Proportion Based on Weighted Polya Posterior (이항 비율의 가중 POLYA POSTERIOR 구간추정)

  • Lee Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.3
    • /
    • pp.607-615
    • /
    • 2005
  • Recently the interval estimation of a binomial proportion is revisited in various literatures. This is mainly due to the erratic behavior of the coverage probability of the will-known Wald confidence interval. Various alternatives have been proposed. Among them, Agresti-Coull confidence interval has been recommended by Brown et al. (2001) with other confidence intervals for large sample, say n $\ge$ 40. On the other hand, a noninformative Bayesian approach called Polya posterior often produces statistics with good frequentist's properties. In this note, an interval estimator is developed using weighted Polya posterior. The resulting interval estimator is essentially the Agresti-Coull confidence interval with some improved features. It is shown that the weighted Polys posterior produce an effective interval estimator for small sample size and a severely skewed binomial distribution.

Coherent Forecasting in Binomial AR(p) Model

  • Kim, Hee-Young;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.1
    • /
    • pp.27-37
    • /
    • 2010
  • This article concerns the forecasting in binomial AR(p) models which is proposed by Wei$\ss$ (2009b) for time series of binomial counts. Our method extends to binomial AR(p) models a recent result by Jung and Tremayne (2006) for integer-valued autoregressive model of second order, INAR(2), with simple Poisson innovations. Forecasts are produced by conditional median which gives 'coherent' forecasts, and we estimate the forecast distributions of future values of binomial AR(p) models by means of a Monte Carlo method allowing for parameter uncertainty. Model parameters are estimated by the method of moments and estimated standard errors are calculated by means of block of block bootstrap. The method is fitted to log data set used in Wei$\ss$ (2009b).

Sensory Difference Testing: The Problem of Overdispersion and the Use of Beta Binomial Statistical Analysis

  • Lee, Hye-Seong;O'Mahony, Michael
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.494-498
    • /
    • 2006
  • An increase in variance (overdispersion) can occur when a binomial statistical analysis is applied to sensory difference test data in which replicate sensory evaluations (tastings) and multiple evaluators (judges) are combined to increase the sample size. Such a practice can cause extensive Type I errors, leading to serious misinterpretations of the data, especially when traditional simple binomial analysis is applied. Alternatively, the use of beta binomial analysis will circumvent the problem of overdispersion. This brief review discusses the uses and computation methodology of beta binomial analysis and in practice evidence for the occurrence of overdispersion.

Parametric Tests and Estimation of Mean Change in Discrete Distributions

  • Kim, Jae-Hee;Cheon, Soo-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.511-518
    • /
    • 2009
  • We consider the problem of testing for change and estimating the unknown change-point in a sequence of time-ordered observations from the binomial and Poisson distributions. Including the likelihood ratio test, Gombay and Horvath (1990) tests are studied and the proposed change-point estimator is derived from their test statistic. A power study of tests and a comparison study of change-point estimators are done via simulation.

Bayesian Multiple Comparison of Binomial Populations based on Fractional Bayes Factor

  • Kim, Dal-Ho;Kang, Sang-Gil;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.233-244
    • /
    • 2006
  • In this paper, we develop the Bayesian multiple comparisons procedure for the binomial distribution. We suggest the Bayesian procedure based on fractional Bayes factor when noninformative priors are applied for the parameters. An example is illustrated for the proposed method. For this example, the suggested method is straightforward for specifying distributionally and to implement computationally, with output readily adapted for required comparison. Also, some simulation was performed.

  • PDF