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Bayesian Multiple Comparison of Binomial Populations 

based on Fractional Bayes Factor
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Abstract

In this paper, we develop the Bayesian multiple comparisons procedure 
for the binomial distribution. We suggest the Bayesian procedure based on 
fractional Bayes factor when noninformative priors are applied for the 
parameters.
An example is illustrated for the proposed method. For this example, 

the suggested method is straightforward for specifying distributionally and 
to implement computationally, with output readily adapted for required 
comparison. Also, some simulation was performed.
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1. Introduction

The primary objective of this paper is to provide a Bayesian multiple 

comparison procedure (MCP) based on the fractional Bayes factor for binomial 

populations when noninformative priors are used. It is well known that binomial 

distribution is widely used parametric distribution in many areas. 

Related with testing equality of two independent binomial proportions, classical 

tests such as exact test or approximate Z-test are widely used. But the test of 

equality of proportions more than three populations relies on likelihood ratio test 

statistic which is distributed as approximately χ2
 distribution. And classical tests 
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only decide whether the null hypothesis, commonly the equality of proportions, will 

be rejected or not. When the null hypothesis is rejected, there remains a problem 

which hypothesis is best for describing the equality of parameters. And the 

researches for multiple comparison more than three binomial populations are rare. 

So, we want to propose a Bayesian MCP for this problem.

Bayesian MCP selects the model with the highest posterior probability. The 

posterior probabilities are calculated using the Bayes factors. And we can compute 

all the posterior probabilities of the hypotheses under consideration.

It is well known that the Bayes factor under proper priors or informative priors 

have been very successful. However, limited information and time constrains often 

forces the use of noninformative priors. Since noninformative priors such as 

Jeffrey's priors or reference priors are typically improper so that such priors are 

only up to arbitrary constants which affects the values of Bayes factors. 

Many people have made efforts to compensate for that arbitrariness (O'Hagan 

1995, Berger and Pericchi 1996).

Among the many people, Berger and Pericchi (1996) introduced the intrinsic 

Bayes factor (IBF) using a data-splitting idea, which would eliminate the 

arbitrariness of improper priors. O'Hagan (1995) proposed the fractional Bayes 

factor (FBF). For removing the arbitrariness he used to a portion of the likelihood 

with a so-called the fraction b. These approaches have shown to be quite useful 

in several statistical areas.

In developing the Bayesian MCP, we will suggest a method based on FBF 

rather than IBF. In MCP for a reasonable number of populations, the use of IBF 

encountered some of difficulties as follows. Firstly, there is a difficulty in 

recognizing which is the more complex model, and some models having the same 

level of complexity. This fact concerns with the stability problem. Secondly, the 

IBF does not have multiple model coherence. Finally, it takes much time to 

compute the IBF because it averages out all possible outcomes of the minimal 

training sample.

The outline of the remaining sections is as follows. In Section 2, we review the 

concept of the FBF methodology and develop the Bayesian MCP. In Section 3, we 

derive expressions of the Bayesian MCP for several binomial populations. And we 

give some real examples to illustrate our procedure. Finally, we give some 

numerical examples. From these results, our Bayesian MCP based on FBF very 

well select the target model.

2. The Bayesian Multiple Comparisons Procedure Using 

Fractional Bayes Factor

Models (or Hypotheses) M1 , M2, , Mq  are under consideration, with the data 
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X= (X1,X2, , Xn )  having probability density function (pdf) f i (x│ θ i )  under 

model Mi, i = 1, 2, , q. The parameter vectors θ  i  are unknown. Let π i (θ i )  be 

the prior distribution of model Mi , and let pi  be the prior probabilities of  model 

Mi , i =1,2, ,q. Then the posterior probability that the model Mi  is true is

P (Mi│x) = (Σ
j = 1

q pj

pi
Bji )

− 1,

where Bji  is the Bayes factor of model Mj  to model Mi  defined by

B ji =
m j (x )

m i (x )
=

f j (x│ θ  j )π j ( θ  j ) d θ  j

f i (x│ θ  i )π i ( θ  i ) d θ  i

.                  (1)

The Bji  interpreted as the comparative support of the data for the model j  to i . 

The computation of Bji  needs specification of the prior distribution π i (θ i )  and 

πj (θ j ) . Usually, one can use the noninformative prior, often improper, for 

parameters such as uniform prior, Jeffreys prior, reference prior or probability 

matching prior. Denote it as πN
i . The use of improper priors π

N
i ( )  in (1) causes 

the Bji  to contain arbitrary constants.

To solve this problem, O'Hagan (1995) proposed the fractional Bayes factor for 

Bayesian testing and model selection problem as follow.

When  the πN
i (θ i )  is noninformative prior under Mi , equation  (1) becomes

B N
ji (x ) =

f j (x│ θ  j )π
N
j ( θ  j ) d θ  j

f i (x│ θ  i )π
N
i ( θ  i ) d θ  i

.

Then the fraction Bayes factor (FBF) of model Mj  versus model Mi  is

BF
ji =

qj (b, x)

qi (b, x)
,

where

q i ( b , x ) =

f i (x│ θ  i )π
N
i ( θ  i )d θ  i

f b
i (x│ θ  i )π

N
i ( θ  i )d θ  i

,
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and f i (x│ θ i )  is the likelihood function and b specifies a fraction of the 

likelihood which is to be used as a prior density. He proposed three ways for the 

choice of the fraction b. That is, (a) b = m/n, when robustness is no concern, (b) 

b = n− 1 max m,
√

n  when robustness is a serious concern, and (c) b=n−1max

n ,log n , as an intermediate option. One frequently suggested choice is b = m/n, 

where m  is the size of the minimal training sample (MTS), assuming this is well 

defined. (see O'Hagan, 1995 and the discussion by Berger and Mortera of 

O'Hagan, 1995).

Consider k  populations with parameters θ = (θ1, , θk )
T
. Let 

X i = (xi1, , xini
)T   be a ni 1  vector of independent observations on θi  with 

density f (xij│ θ i ) , i = 1, ,k , j=1, ,ni . Then the likelihood function for θ  given 

X= (X 1, ,X k )  is

L (θ│x) = Π
i = 1

k

Π
j = 1

ni

f (xij│θi ).

The MCP of k  populations is to make inferences concerning relationships among 

the θi's based on X . 

Let Ω = θ = (θ1, , θk )│θi R, i = 1, 2, , k  be the k-dimensional parameter 

space. Equality and inequality relationships among the θi's induce statistical 

hypotheses that subsets of Ω. Say, M0 : Ω0 = θi│θ1 = = θk , M1 :Ω1= θi|θ1≠θ2

= =θk , and so on up to MQ : ΩQ = θi│θ1≠ ≠ θk . The hypotheses (Mr:Ωr;

r=1, ,Q ) , are disjoint, and Ω =∪Q
r= 1Ωr.

Each hypothesis can classified r (r = 1, , k )  distinct groups. Let (θ*
1, , θ*

r )  

denote the set of distinct θi's, where r  is the number of distinct elements in the 

vector Ω. We define the configuration notation.

Definition 1 (Configuration). The configuration S = S1, , Sk  determines a 

classification of θ  into r  distinct groups. Write Ij  for the set of indices of 

parameters in group j , Ij = i│Si = j . Let nIj
= ni│i Ij  be the index set of 

observations and θ*
j  be the common parameter value for Ij.

There is a one-to-one correspondence between hypotheses and configurations. 

Therefore the Bayes factor for MCP can easily compute by this configuration. As 
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an illustration, let k = 5  and S = 1, 2, 1, 2, 3 . Then r = 3 , I1 = 1,3 , θ*
1, nI1

= n1  

,n3 ,  I2 = 2,4 , θ*
2, nI2

= n2, n4 , I3 = 5 , θ*
3  and nI3

= n5 . And the 

noninformative prior for a model with r  distinct groups denoted by πN
r (θ*

1, , θ*
r ) .

Now we will develop Bayesian multiple comparisons procedure using fractional 

Bayes factor. Suppose that a model classified r  distinct groups. Then the 

likelihood function is given by

L (θ*
1, , θ*

r│x) = Π
t = 1

r

Π
i : i It

Π
j nIi

f (xij│θt ).

And the noninformative prior for the model is πN
r (θ*

1, , θ*
r ) . Thus the element of 

the FBF is given by

q (b, x ) =
− ∞
∞

− ∞
∞

L (θ*
1, , θ*

r│ x )πN
r (θ*

1, , θ*
r )dθ*

1 dθ*
r

− ∞
∞

− ∞
∞

Lb (θ*
1, , θ*

r│ x )πN
r (θ*

1, , θ*
r )dθ*

1 dθ*
r

.

Thus if a model Mi  classified ri  distinct groups and  a model Mj  classified rj  

distinct groups then the FBF of Mj  versus Mi  is given by

BF
ji (x) =

qj (b, x)

qi (b, x)
,

where

qi (b, x ) =
− ∞
∞

− ∞
∞

L (θ*
1, , θ*

r1
│ x )πN

r1
(θ*

1, , θ*
r1

)dθ*
1 dθ*

r1

− ∞
∞

− ∞
∞

Lb (θ*
1, , θ*

r1
│ x )πN

r1
(θ*

1, , θ*
r1

)dθ*
1 dθ*

r1

.      (2)

Hence  the FBF for all comparisons can computed by equation  (2). Using these 

FBF, we calculate the posterior probability for model Mi , i =1, Q . Thus for 

MCP, we select the hypothesis with highest posterior probability. Note that as the 

number k  of populations increase, the number of hypotheses increases 

exponentially. The number of hypotheses is given by the Bell exponential number 

Bm  (see Berge 1971). The sequence Bm  can be generated by the recursion 

Bm+ 1 = Σ
i = 0

m       m
i Bi,m = 0, 1,

where B0 = 1 . When the number of populations under consideration is k , then 
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Q = Bk  for k ≥ 2 .

For a reasonably moderate number of treatments, such as 8 and 9, the number 

of hypotheses to be considered  is 4,140 and 21,147, respectively. These numbers 

are very large. But our developed procedure in this section runs quickly and given 

a correct results. However, for a large number of treatments k≥ 10 , the proposed 

procedure needs much time on our computer with Pentium IV processor.

3. The Binomial Sampling

Let X i  be an independent sample from a binomial with parameters ni  and θi . 

Suppose that a model Mi  classified r  distinct groups. Then the noninformative 

prior for θ*
i , ,θ*

r  is

πr (θ
*
1, , θ*

r ) =
1√

θ*
1 (1 − θ*

1 ) θ*
r (1 − θ*

r )
, 0≤θ*

1≤1, , 0≤θ*
r≤1.

The likelihood function is

L (θ*
1, , θ*

r│x) = S1 SkΠ
t = 1

r

(θ*
t )

Σ
i It

xi

(1 − θ*
t )

Σ
i It

(ni − xi )

,

where Si=

       
ni

xi
, i = 1, , k.

Then the elements of FBF are given by

0

1

0

1

L (θ*
1, , θ*

r│x)πr (θ
*
1, , θ*

r )dθ*
1 dθ*

r

= S1 SkΠ
t = 1

r Γ (
1
2

+ Σ
i It

xi )Γ (
1
2

+ Σ
i It

(ni − xi ))

Γ (1 + Σ
i It

ni )

,

and

0

1

0

1

Lb (θ*
1, , θ*

r│x)πr (θ
*
1, , θ*

r )dθ*
1 dθ*

r

= (S1 Sk )bΠ
t = 1

r Γ (
1
2

+ Σ
i It

bxi )Γ (
1
2

+ Σ
i It

b (ni − xi ))

Γ (1 + Σ
i It

bni )

.
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Thus

q (b, x) =
S1 Sk

(S1 Sk )b

Π
t = 1

r Γ (
1
2

+ Σ
i It

xi )Γ (
1
2

+ Σ
i It

(ni − xi ))Γ (1 + Σ
i It

bni )

Γ (
1
2

+ Σ
i It

bxi )Γ (
1
2

+ Σ
i It

b (ni − xi ))Γ (1 + Σ
i It

ni )

.

Therefore if a model Mi  classified ri  distinct groups and a model Mj  classified rj  

distinct groups then the FBF of Mj  versus Mi  is given by

BF
ji (x) = Π

t = 1

rj
Γ (

1
2

+ Σ
i It

xi )Γ (
1
2

+ Σ
i It

(ni − xi ))Γ (1 + Σ
i It

bni )

Γ (
1
2

+ Σ
i It

bxi )Γ (
1
2

+ Σ
i It

b (ni − xi ))Γ (1 + Σ
i It

ni )

Π
t = 1

ri
Γ (

1
2

+ Σ
i It

bxi )Γ (
1
2

+ Σ
i It

b (ni − xi ))Γ (1 + Σ
i It

ni )

Γ (
1
2

+ Σ
i It

xi )Γ (
1
2

+ Σ
i It

(ni − xi ))Γ (1 + Σ
i It

bni )

.

Example. To investigate the effect of planting longleaf and slash pine seedlings 

1/2  inch too high or too deep in winter on their mortality in following fall, an 

experiment was conducted involving 200 pine seedlings of both types, 100 of 

which were planted too high and 100 too deep. Because the number of plants for 

each combination of Seeding Type ( LS=Longleaf Seedling, SS=Slash Seedling) 

and Depth of Planting ( DH=Depth too High, DL=Depth too Low) was fixed by 

design, we have four binomial experiments each of size ni = 100 ,i = 1,2,3,4 , 

corresponding to the four combinations (LS, DH), (LS, DL), (SS, DH) and (SS, 

DL). The data are reported in the Table 1. ( For more details on this experiment 

and analysis of the data, see Fienberg 1980, Consonni and Veronese 1995).

<Table 1> Mortality of Pine Seedlings Data

 LS DH LS DL SS DH SS DL

Experiment 1 2 3 4

x i 59 89 88 95

θ î 0.59 0.89 0.88 0.95
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We assume that the prior probabilities are equal. Then Table 2 gives the posterior 

probabilities for hypotheses. 

<Table 2> Posterior Probabilities for Hypotheses

Hypothesis Posterior Probability Hypothesis Posterior Probability

1  1  1  1

1  1  1  2

1  1  2  1

1  1  2  2

1  1  2  3

1  2  1  1

1  2  1  2

1  2  1  3

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

1  2  2  1

1  2  2  2

1  2  2  3

1  2  3  1

1  2  3  2

1  2  3  3

1  2  3  4

0.0000

0.4015

0.3639

0.0000

0.1051

0.0731

0.0564

The number of possible hypotheses for the MCP is 15. The hypothesis  1 2 2 2

(θ1≠ θ2 = θ3 = θ4 )  has the largest posterior probability. Next the hypothesis 

(θ1≠ θ2 = θ3≠ θ4 )  has the second largest posterior probability.

For the problem of combining information related to k  binomial experiments, 

Consonni and Veronese (1995) considered a partition of the experiments and take 

the θi's belonging to the same partition subset to be exchangeable (partial 

exchangeability) and the θi's belonging to distinct subsets to be independent. 

They revealed the hypothesis (θ1≠ θ2 = θ3 = θ4 )  has the highest posterior 

probability for the above data. But they analyzed the posterior probability of a 

selected collection of partitions that are most supported by data.

4. Monte Carlo Simulation Studies

We examine whether the our procedure for MCP work well. Although all 

configurations for k ≥ 3  populations are considered, we examine our procedure for 

the MCP under some population and configuration to save the space. We consider 

k = 5  populations. And, for simplicity, we only assume two configurations, 

θ1 = θ2 = θ3 = θ4 = θ5  and θ1 = θ2 = θ3≠ θ4 = θ5  for 5 binomial populations. We 

consider that X= (X 1, ,X 5 )  be a set of independent sample, where X i  is a 

sample from a binomial distribution with parameter θi . Let the first true 

configuration θ1 = θ2 = θ3 = θ4 = θ5 = 0.1  and the second true configuration θ1=θ2

=θ3=0.1,θ4=θ5=0.2 with the sample sizes n1 = = n5 = n = 30, 50, 100 . And we 

assume that the prior probabilities are equal. Under 1,000 replications, Table 3 and 

4 give the posterior probabilities for hypotheses.
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From the results, our procedure work well for small and moderate sample sizes. 

From the all simulation results for the considered models, our procedure for MCP 

always select the true hypothesis from small sample size to moderate sample size. 

Though we do not report simulation results for the other configurations, the 

number of populations, and sample sizes, we verified that our proposed procedure 

worked very well.

5. Conclusions

We have considered the problem of developing a Bayesian MCP for binomial 

populations. We proposed the Bayesian MCP based on fraction Bayes factor when 

the noninformative prior is used. 

The suggested Bayesian MCP allows for probability calculations of hypotheses 

of equality and inequality under the moderate number of populations and gives a 

correct results.

As some application of our procedure, we can apply our method to calculating 

the posterior probabilities related with the Bayesian model averaging, variable 

selection of regression and Bayesian analysis of mixtures with an unknown 

number of components under parametric models. 
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<Table 3> Posterior Probabilities for Hypotheses

ni Hypothesis Post. Prob. Hypothesis Post. Prob. Hypothesis Post. Prob. Hypothesis Post. Prob.

30

11111      0.0802

11112      0.0334

11121      0.0340

11122      0.0306

11123      0.0141

11211      0.0348

11212      0.0316

11213      0.0145

11221      0.0330

11222      0.0310

11223      0.0140

11231      0.0152

11232      0.0135

11233      0.0135

11234      0.0063

12111      0.0358

12112      0.0319

12113      0.0150

12121      0.0329

12122      0.0318

12123      0.0140

12131      0.0152

12132      0.0138

12133      0.0141

12134      0.0064

12211      0.0317

12212      0.0306

12213      0.0132

12221      0.0331

12222      0.0353

12223      0.0152

12231      0.0144

12232      0.0146

12233      0.0140

12234      0.0064

12311      0.0153

12312      0.0138

12313      0.0139

12314      0.0064

12321      0.0147

12322      0.0151

12323      0.0144

12324      0.0066

12331      0.0148

12332      0.0145

12333      0.0153

12334      0.0067

12341      0.0068

12342      0.0065

12343      0.0065

12344      0.0065

12345      0.0030

50

11111      0.1117

11112      0.0361

11121      0.0372

11122      0.0337

11123      0.0121

11211      0.0378

11212      0.0339

11213      0.0123

11221      0.0360

11222      0.0339

11223      0.0118

11231      0.0129

11232      0.0115

11233      0.0116

11234      0.0042

12111      0.0394

12112      0.0344

12113      0.0127

12121      0.0352

12122      0.0348

12123      0.0118

12131      0.0129

12132      0.0117

12133      0.0122

12134      0.0043

12211      0.0347

12212      0.0332

12213      0.0112

12221      0.0364

12222      0.0389

12223      0.0130

12231      0.0122

12232      0.0126

12233      0.0122

12234      0.0043

12311      0.0132

12312      0.0116

12313      0.0117

12314      0.0042

12321      0.0125

12322      0.0130

12323      0.0121

12324      0.0044

12331      0.0129

12332      0.0124

12333      0.0134

12334      0.0045

12341      0.0045

12342      0.0043

12343      0.0043

12344      0.0045

12345      0.0016

100

11111      0.1642 

11112      0.0379 

11121      0.0396 

11122      0.0359 

11123      0.0091 

11211      0.0408 

11212      0.0368 

11213      0.0095 

11221      0.0389 

11222      0.0364 

11223      0.0091 

11231      0.0101 

11232      0.0090 

11233      0.0090 

11234      0.0023 

12111      0.0418 

12112      0.0371 

12113      0.0097 

12121      0.0376

12122      0.0369

12123      0.0089

12131      0.0099

12132      0.0090

12133      0.0093

12134      0.0023

12211      0.0375

12212      0.0360

12213      0.0087

12221      0.0386

12222      0.0416

12223      0.0099

12231      0.0094

12232      0.0098

12233      0.0094

12234      0.0024

12311      0.0103

12312      0.0092

12313      0.0092

12314      0.0024

12321      0.0096

12322      0.0101

12323      0.0094

12324      0.0024

12331      0.0098

12332      0.0097

12333      0.0103

12334      0.0025

12341      0.0025

12342      0.0024

12343      0.0024

12344      0.0025

12345      0.0006
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<Table 4> Posterior Probabilities for Hypotheses

ni Hypothesis Post. Prob. Hypothesis Post. Prob. Hypothesis Post. Prob. Hypothesis Post. Prob.

30

11111      0.0528

11112      0.0318

11121      0.0325

11122      0.0621

11123      0.0248

11211      0.0275

11212      0.0208

11213      0.0151

11221      0.0209

11222      0.0362

11223      0.0163

11231      0.0148

11232      0.0164

11233      0.0267

11234      0.0108

12111      0.0311

12112      0.0202

12113      0.0157

12121      0.0201

12122      0.0341

12123      0.0154

12131      0.0157

12132      0.0158

12133      0.0275

12134      0.0109

12211      0.0369

12212      0.0197

12213      0.0159

12221      0.0214

12222      0.0279

12223      0.0150

12231      0.0166

12232      0.0151

12233      0.0270

12234      0.0108

12311      0.0173

12312      0.0101

12313      0.0112

12314      0.0076

12321      0.0104

12322      0.0158

12323      0.0106

12324      0.0073

12331      0.0116

12332      0.0107

12333      0.0174

12334      0.0078

12341      0.0076

12342      0.0073

12343      0.0077

12344      0.0123

12345      0.0049

50

11111      0.0533

11112      0.0346

11121      0.0353

11122      0.1005

11123      0.0312

11211      0.0245

11212      0.0168

11213      0.0136

11221      0.0169

11222      0.0410

11223      0.0160

11231      0.0124

11232      0.0159

11233      0.0332

11234      0.0105

12111      0.0287

12112      0.0162

12113      0.0138

12121      0.0160

12122      0.0388

12123      0.0151

12131      0.0137

12132      0.0152

12133      0.0338

12134      0.0104

12211      0.0417

12212      0.0158

12213      0.0158

12221      0.0173

12222      0.0256

12223      0.0131

12231      0.0159

12232      0.0137

12233      0.0340

12234      0.0106

12311      0.0152

12312      0.0069

12313      0.0080

12314      0.0058

12321      0.0072

12322      0.0136

12323      0.0075

12324      0.0055

12331      0.0083

12332      0.0076

12333      0.0154

12334      0.0058

12341      0.0055

12342      0.0053

12343      0.0059

12344      0.0119

12345      0.0037

100

11111      0.0358 

11112      0.0308

11121      0.0313

11122      0.2118

11123      0.0465

11211      0.0171

11212      0.0084

11213      0.0098

11221      0.0084

11222      0.0444

11223      0.0138

11231      0.0091

11232      0.0146

11233      0.0514

11234      0.0112

12111      0.0166

12112      0.0092

12113      0.0093

12121      0.0077

12122      0.0417

12123      0.0139

12131      0.0099

12132      0.0134

12133      0.0497

12134      0.0110

12211      0.0436

12212      0.0080

12213      0.0131

12221      0.0084

12222      0.0172

12223      0.0097

12231      0.0142

12232      0.0087

12233      0.0500

12234      0.0108

12311      0.0109

12312      0.0039

12313      0.0034

12314      0.0035

12321      0.0034

12322      0.0107

12323      0.0033

12324      0.0035

12331      0.0034

12332      0.0037

12333      0.0107

12334      0.0035

12341      0.0036

12342      0.0033

12343      0.0035

12344      0.0126

12345      0.0027
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