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Abstract In this paper, we explore some interesting models of the quasi-negative-
binomial distribution based on difference differential equations applicable to
theory of microorganisms and the situations like that. Some characterizations
based on conditional distributions and damage process have been obtained.
Further, the distribution of number of accidents as the quasi-negative-binomial
distribution in the light of Irwin’s theory of “proneness-liability” model has been
derived. Finally, the proposed model (QNBD) has been applied to study the
Shunting accidents, home injuries, and strikes in industries.
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1. INTRODUCTION AND MOTIVATION:

Unlike Jain and Consul’s (1973) GPD model, the quasi-negative-binomial
distribution also reveals the fact that the probability of success from trial to trial does
not remain constant. However, in the real world of living beings the value of the
probability changes according to the circumstances. These changes may be due to the
inheritance of genes, psychological effects, feelings of social togetherness, previous
experience, determination for successor or to face a common danger, adjustments
needed for changes in environments, wisdom etc. In such cases, the classical
negative binomial distribution does not fit well the data arising from these cases. In
fact, these are situations where the probability does remain linearly dependent on the
number of successes.
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The quasi-negative-binomial distribution is an interesting distribution and has not
been studied in detail so for. It was obtained in different forms by Janardan (1975),
Nandi and Das (1994) and Sen and Jain (1996).

In this paper, we applied the proposed model to study microorganisms and
obtained some models based on difference differential equations leading to the quasi-
negative-binomial distribution. This has been shown in Section 2. Section 3 deals
with some characterizations based on conditional distribution and damage process.
The distribution of number of accidents as quasi-negative-binomial distribution in the
light of Irwin’s theory of “proneness-liability” model has been derived in Section 4.
Finally, in Section 5, we applied the proposed model to study the Shunting accidents,
home injuries, and strikes in industries and obtained some remarkable fit than GPD
model.

2. MODELS BASED ON DIFFERENCE DIFFERENTIAL EQUATIONS

In a paper by Tukey(1949), the probability distribution of balls in boxes is a
Poisson distribution while assuming that the probability /7_of finding x balls in a box

is a function of mean number A of balls in the boxes such that /7 =1/ forA=0,

%:—IIO and %:—IIH for x>1.This result was generalized by Consul (1988)
for generalized Poisson distribution and proved two results for the generalization of
Tukey’s result. Consul (1990d) also proved these results for quasi-binomial
distribution.

It has been shown by many authors that the classical negative binomial
distribution has become increasingly more successful and more flexible alternative
than Poisson distribution in accounting the data especially arising in the study of
entomology, bacteriology, ecology etc. Taking this fact into consideration and noting
that quasi-negative-binomial distribution is a generalization of Jain and Consul’s
(1973) generalized Poisson distribution, in Gurland’s (1957) terminology, and that of
classical negative-binomial distribution, we had made an attempt here to prove these
results for the proposed model. ,

Let there be an infinite but countable number of available spaces for insects,

bacteria, viruses or microbes. Let 8, be the probability of initial desire of each one of
them to get into a particular location. This value of 6, may increase or decrease by a
small quantity 6, due to some factors like psychological effects, feeling of social

togetherness, mutual consultations, communications, determination, prevalent
conditions, and the numbers succeeding to get in that location. Let M (a,6,6,) be

the probability of finding exactly ¢ a *number of microbes in that location which will
be function ofa,6, and@,. By changing each one of the parameters ¢, and 6, we

get the following two theorems.

Theorem. 2.1. 1f the mean u(a,6,6,) for the probability distribution of
microorganisms is increased by changing the parameter 6, to 8,+A6, in such a
manner that
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0 a
30, w7 M, (a6, 92)=————(]+01)M0(a,0],02) .0
and
___ (a+x)
69M(a ,8,)= ———-—-(1+9]+x92)Mx(a, 0,0,)+aM (a+1¢9+ ,,0,) 2.2)

For all integral values of x>0 with the initial condition M, (a0,6,)=1 and
M (a00,)=0 for x>0, then the probability model M (a,6,6,) is the QNBD
model P(a,6,0,).

Proof. Equation (2.1) is a linear differential equation with integrating factor(/+6, )“

and the general solution M (a,0,.6,)=C,(1+6,). By making use of the initial

condition M (a0, 0,)=1, the constant C,=1/ and therefore,
Ma8,0,)=(1+6,)"=F(ab,0,)

Taking x=/in (2.2) and using the result above, we get the linear differential
equation
0
00,

(a+1)

M(00 9)=——(‘]‘+—9m

a
Ml(a’91’92)+(1+91 +92)a+1

with the integrating factor(7+6,+6,)**' and the general solution
(1+6,+0,)*'M(a8,.0,)=ab,+C,
By making use of the initial condition M (a,0,8,) =0, the constant C,=0 and
M(a0b,6,)=a0,(1+6, +0,)"'=P(ab,0,)
Using the result above in (2.2) for x=2, we get

(a+2) a(a+1)(6,+6,)
5 7+, + 26,102+ g2,

On multiplying the differential equation above  with integrating
factor(1+6,+20, )°*? and then integrating w.r. to 6,, we get

eM(aé’ 0,)=-

02
(1+6,+20,)"°M (a,0,0,)= a(a+1)[’ +60}+C2

By making use of the initial condition forx=2, we get C,=0and

a(a+1) 0,(6,+26,)
21 (1+6,+20,)*

Now, for x=3, equation (2.2) together with relation (2.3) gives

al (a+3) a(a+1)(a+2)(0,+6,)(6,+36,)
36, (1+6,+36,) 2! (1+0,+36,)"*

The general solution of the linear differential equation above is

M,(a,0,8,)= = P(a,0,0,) (23)

M(a@ 0):—— M3(a,01,92)+

(1+6, +302)"*3M3(a,9,,92)=g(iwm, +36,) +C,
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Again, by making use of the initial condition M ,(a,0,6,)=0, the constant C; becomes

zero and we get

a(a+1)(a+2) 0,(0,+36,)
3! (1+6,+36,)"*

Thus we have proved that M (a,0,.0,)=P (a,6,0,)forx=0123. Now, it can be

easily shown by the method of induction that

(a+x-1)! 6,(6,+x6,)""

(a-1)! x! (1+6,+x8,)"**

M (a,6,6,)= =P,(a,0,0,)

M, (a6,6,)=

=P(a,0,6,) for all nonnegative integral

values of x .
Theorem. 2.2. If the mean p(a,6,0,) for the probability distribution of
microorganisms is increased by changing the parameter 6, to 8,+Ad, in such a

manner that
0
@;Mo(aﬂ],ez)=0 2.4)
and
el __=x(a+x) a(x=1)o,
50, Mx(a,Bl,Hz)—(1+91 +x92)Mx(a,91,02)+ (6,+0,) Mx_l(a+1,01+02,92) 2.5

for all integral values of x>0 with the initial condition

(a+x-1)! 0
(a=1)! x! (1+6, )+

probability model M (a,6,,6,)is the QNBD model P.(a,6,,6,) .

Proof. Integrating equation (2.4) w.r. to 6, and by making use of the initial

conditionM(a,0,0)=(1+6,), the constantC =(1+6,)™ and thus
My(a0,0,)=(1+6,)°=F(ab,0,)

For x =1, the difference differential equation (2.5) becomes

K ___(a+l)
26, M1(26,0:)== 1135 46

The integrating factor for the above is(7+6,+6, )" and the general solution is
M(a0,.6,)=(1+6,+6,)"'C,

By making use of the initial conditon M,(a,6,0)=af/(1+06, ol we

getC,=ad, and .

M (a6,0)=(1+6,)“ and M (a6,0)= for x>0 , then the

M(a6,0,)

M(a,0,6,)=a6,(1+6,+6,)°"'=P(ab,0,)
Taking x =2 in (2.5) and making use of the result above, we get

2(a+2) a(a+1)6,

2
0 - 2.6
My(a,0,)==T+6,+26,) (1+6,+20,)"" 6)

56, M,(a,6,0,)+
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On multiplying the differential equation above with its integrating
factor(1+6,+ 26, )*** and then integrating w.r. to 0, , we get

(1+6,+26,**M,(a,6,0,)=a(a+1)8,6,+C,

afa+1) 9,2
2! (1+0])a+2’

By making use of the initial condition M ,(a,0,0)= the constant

_a(a+l) 2
C,= %7 6,” . Therefore,

a(a+1) 0/(01+292)
20 (1+6,+26, )
Using the result above in (2.5) for x=3, we get

B 3(a+3)

26, M:(6,%,)=~7135 336

M,(a,6,0,)=

=P(ab,0,)

a(a+1)(a+2)0,(6,+36,)
(1+6,+36, )"

The integrating factor for the differential equation above is(7+6,+36,)**’ and the
general solution is

(1+6'l+302)"+3M3(a,91,62)= a(a+1)(a+2)0102[01+%92}+C3

M,(a6,6,)+

a(a+1)(a+2) 6]

By the initial condition M (a,6,0)= 3 (156 J7°
) 1

the constant

C _a(a+1)(a+3)

P 3 6?,3 and thus

a(a+1)(a+2) 9,(9,"'3‘9_7)2
3! (1+6,+30, )+

In a similar manner it can be easily shown by the method of induction that the

M(a8,6,)=

=P(a0,6,)

unknown constants are determined by C = afa+l). ;c/(a +x-1) 6 for x=12,....

and that

(a+X"'1)., 9](9,+x02)x_l
(a—1)! x! (1+6,+x86, )

for all nonnegative integral values of x .

M(a0,0,)= =P(ab,8,)

3. CHARACTERIZATION BASED ON CONDITIONAL DISTRIBUTION AND BY
DAMAGE PROCESS

Theorem.3.1. If X and Y are two independent random variables defined on the set
of all non-negative integers such that

19



Sheikh Bilal and Anwar Hassan

n

np+k=INny+n—k-1
P[X:V ]_ k I n—k )91(6’1 +k6,)'(6,+(n—k)0, ) '(1+6,+n6, )"
X+Y=n (nl+n2+n-l) (1+01+k02)n1+k(1+01 +(n_k)02)n2+k(91+n02),,_1

3.1

for k=0,12,.....nand zero else where
Then show that X and Y must have QNBD with parameters (n,.6,,6,) and
(n,.0,,0,) respectively.
Proof. Let P( X =x)=f(x)>0, Zf(x)=] and P(Y=y)=g(y)>0, Zg(y)=1
By the given condition the random variables X and Y are independent, therefore

D f(k)g(n—k)
k=0

By making use of (3.1) in the equation above, for #>/ and 0<k<n, we get
functional relation

F(k)g(n-k) _(n+k=D)(n—k+1) (8,+k6, )" (6, +(n—k)0,)™*"
f(k-Dgn—k+1) ~ Kn,+n=k) (0, +(k—1)0,) (8, +(n—k+1)8,)*

(146, +(k=1)8,) 1" (146, +(n-k+1)8, )"

33
(1+6,+k0,)1** (1+8,+(n—k)d,)2*"* @3
Replacing k£ by k£ +1and nby n+1in the above, we get
f(k+1)g(n—k) =(nl+k)(n—k+1)(0,+(k+])02)" (01+(n~k)92)""‘"
f(k)g(n—k+1) (k+1)(n,+n-k) (6,+k8, )" (6,+(n—k+1)8,)"*
(1+6,+k0,)™  (1+6,+(n—k+1)9,) 2"+ G4)

170 +(k+1)8, )T (146, +(n—k)g, )2
On dividing (3.4) by (3.3), we get
Fk+Df(k=1)_ (n+kk  (8,+(k+1)8,)}(8,+(k=1)8,)?
[F(k)]? —(k+1)(nl+k—1) (01+k92)2"‘2
(1+6,+k8, )1
(156, +(k+1)8, Jr1(158,+ (k—1)8, 1™
Taking k£ =1,2,.....n—1 in the equation above and then on multiplying together, we
get
f(n) _f(D)(n+n=1) (6,+n8,)"  (1+6,+6, )" (1+6,+(n-1)8, )"
f(n=1) f(0) nn, 81(01+(n—1)92)"‘2 (1+6,)" (]+9]+n02)"’+”
f()_ nB(1+6, )"
f0) (1+6,+6, )
f(n)z(nl+n—1) (01+n92)""‘ (1+6,+(n-1)6,)"*""
n (6,+(n=1)8,)"%  (1+6,+nB,)'*"
A repeated use of the equation above gives

Setting in the equation above, we get

f(n-1)
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_(n+n=1)16/(6,+nf, y(1+6 )"
f(n) (nl—I)/n/ (1+9[+n02)"1+"1 f(O)

Now, by making use of the fact that Z f(x)=1, the recurrence relation above gives
f(0)=(1+01)"‘1 and thus
(n,+x-1)! 8(0,+x0, )"’
(m=D!x! (146 +x0,) ™
Hence the random variable X has a QNBD with parameters ( n,.6,.6,).
On taking k£ =1in (3.3), we get
g(n) _f(0)(ny+n=1) (6,+n8,)"  (1+6,+6,)" (1+6,+(n-1)8,)?*""
gn=1)"j(1) nny 6,(0,+(n-1)6,)" (1+9,)nl (1+91+n92)n2+n
f(1)_ nfg(1+6))"
J0) (1+6,+6, )1
_(n,+n-1) (6,+n8, ) (1+6,+(n-1)8,)""""
o ((n=1)B ) (146,4n6,)" "
A repeated use of the equation above gives
(n,+n—1)!6(6 +n, )-i(1+8 )"
SO =D (146,n0,7"
1 2
Since z g(x)=1, the recurrence relation above gives g(0)=(1+86,)™"? and thus
(n,+y-1)! 6,(6,+y6,)"
(n,=D!Y! (146,+y8,)"?"
Hence the random variable Y also possesses QNBD with parameters (,,0,,0,) .
Theorem. 3.2. Let X and X, be two independent discrete random variables whose
sumY is a QNB variate with parameters( a,0,.0,). Then X,and X, must each be a
QNB variate defined over all non-negative integers.

Proof. Consul (1974) and famoye (1994) proved this theorem for GPD and GNBD
respectively. Since QNBD is a generalization, in Gurland’s (1957) terminology, of
restricted GPD model with parameters (6,26 ) obtained by compounding the GPD
model through the values of § with gamma distribution y(a,b) as mixing distribution.
Further, QNBD is also generalization of NBD. Therefore, taking these facts into
consideration, an attempt has been made here to prove that the theorem under
consideration also holds good for the proposed model.

Since the QNB variate Y has a lattice distribution defined over all non-negative
integers. Therefore, using arguments of Raikov (1937), the random variables X ; and

J(x)=

Setting as usual

in the equation above, we get

g(n)

g(n-1)

g(0)

g(y)=P(Y=y)=

X, must have also lattice distribution defined over all non-negative integers.
Let the pgf of the random variable X ,i=12 be denoted by

g,.(u)=iPi(x)u", lU|<1

x=0

21



22

Sheikh Bilal and Anwar Hassan

Where P(x)=P(X, =x)represents the pdf of X,i=12 Since the sum V=X, +X,
has a QNBD with parameters(a,6,,6,), therefore its pgf is
g(u)=¢(t)=(1+6,-6t)"  where 1=(1+6,-6,t) and

8 (u)g,(u)=g(u)=¢(t)=(1+0,-6)“ where t=(1+6,-6,t)°

Now, using the arguments of Raikov (1937), the pgf of QNBD can only be factorized
into pgf’s of negative binomial distributions. Thus, the factors ¢,(7) and ¢,(t) of
#(t)=(1+6,-6¢)° must be given by P,(t)=(1+6,-6,) and
$,(t)=(1+6,-6¢t) """ where a; is an arbitrary number such that0<a, <a. Hence
pgf’sof X and X, becomes

g,(u)=(1+0,-0t)" and g,(u)=(1+6,~6;) " wheret=(1+6,-6,t)°. Because
of the uniqueness property, the pgf’s g (u) and g,(u) must represent QNBD models.
Thus, X,and X, must be a QNBD variate defined over all non-negative integers with
parameters (a,,6,,0,) and (a-a,6,,6,) respectively, where0<q, <a.

Theorem. 3.3. If a non-negative QNB variate X is subdivided into two components

Xjand X, such that the conditional distribution P[X' =k, X2=x—%=x} is a
hypergeometric-quazi-negative-binomial distribution

ap+k-1\ a~a;+x—k-1

( k X Xk ) 6,(0,+k6,)(60,+(x—k)8, ) *'(1+6,+x6, )+
(’) (1+0,+k0, fI* (1+6,+(x—k )8, 1" 7*(6,+x6, !

X

with

Parameters ( a,al,k,é?],ez ),0< a, <a then the random variables X ,and X, are

independent and have the QNBD.
Proof. Let X be a QNB variate with parameters (a,6,,6,) then its probability »

distribution is .

a+x-l) 0,(6,+6,x )"
(1+6,+6,x )"~

The joint probability distribution of random variables X, and X ,is given by the

conditional distribution

X,=k X,=x-k
P(X,=k,X2=x—k)=P|: 1=H AT A=x}P(X=x)

P(X=x)=(

X

On substituting the values in the equation above, we get
ay+k-1 91 (9] +k02)k_1 a—al+x—k-—l\ 9] (01 +(x_k)02)x—k—l
(1+6,+k0, )\ o ) (1+6,+0x) 1™
=£(a6,6,)P (a-a,0.0,)
Which is a product of two quazi-negative-binomial probabilities corresponding to two
random variables X, and X,. Thus the two random variables are independent and

have QNBD models with parameters (a.,6,,6,) and (a-a,.6,,6,)respectively.

P(Xlzk,X2=x—k)=(

k
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Characterization by damage process.

When an investigator collects a sample of observations produced by nature,
according to a certain model, the original distribution may not be produced due to
non-observability of some events or the partial destruction of some units. This
problem was first pointed out by Rao (1963) when he studied the resultant model
after the observations, generated by some probability models, were damaged by other
probability models. Subsequently Rao and Rubin (1964), Srivastava and Srivastava
(1970) and Consul (1975) also studied the same problem in case of Poisson and GPD
models, In this paper, we have made an attempt to obtain some characterization of
QNBD model in the light of the same theory.

Let X be a random variable defined on non-negative integers with probability
distribution { P }and let Z be a random variable denoting the undamaged part of the

random variable X when it is subject to destruction process such that

Theorem. 3.4. If X is a QNB variate with parameters (7,6,,6, )and if the destructive
process is hypergeometric-quazi-negative-binomial variate given by

np+k=I\n—ny+x—k-1
S[’V]l k I xk ] 0,(0,+k6,))(6,+(x—k)0,)*(1+6,+x6, )"
X (') (1+60,+k6,)""™* (1+6,+(x~k)6,)"***(8,+x8, )

X

k=01,..x
Show that
1) Zisa QNB variate with parameters(n,,6,,6,) .

. _ — 7= k = Z = k
i) P(Z=k) _P[ /Y damaged}—P{ A undamaged}

Proof.

) pz=k)=3 s/ lp(n6,0,)
x=k

o ((nyvk=1 n—n,+x—k—l\ 6](01+k92)k"(01+(x—k)92)x‘k'l 9]
& sk J(I1+0,+k6, )1 (146, +(x~k )8, ) "1+
_ np+k-1 91(9)+k92)k'1 0 n-n]+r—1\ (9)+r02)r—1 91
o J1+0,+k0, RS . (140,470, )
_ ny+k-~1 91(91+k92)k—1
K )1+0,+k6, )
Thus the random variable Z is a QNB variate with parameters(n,,6,,6,) .

S sl/leino,0,)

ii) P[Z =%(damaged]=ix=ki S[’/l” (n6.6,)
xBamrmre2

(" 9,06, + k8, ) 2«: n,+k—1) 6,(6,+k6, )
Tk )10, 4k6, T N« J(1+6,+k0, )0

k

=F(n,6,0,)

23
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ny+k~1 (6 +kO k-1
("GO ROy
K J(1+6,+k6,)
Similarly it can be shown that

' J- RANZXY,
Y sl lne,o,)

k=0

—(HI‘H‘—I\ 01(91+k92)k_1

X undamage

=P(Z=k
K )(1+91+k02)”1*" (2=k)

o ("N 606, +k6, )
where ;S[%h(n,el,Oz):kZo( \ )(1;9j+k02)nl+k =1

4. QNBD MODEL AS A DISTRIBUTION OF NUMBER OF ACCIDENTS IN THE
LIGHT OF LRWIN’S THEORY OF “PRONENESS-LIABILITY” MODEL

Traffic accidents remain in concern for every one’s life. Various theories have
been developed concerning the interpretation of different situations. A natural model
which assumes that the probabilities of having an accident are only result of random
factors is that the number of accidents is poisson distribution with parameter A i.e,

P(N=n)=2e?, n=012.......
Where N is the random variable which describes the number of accidents of a single
person.

Another theory, the “accident proneness” theory which takes into account the
indual’s difference in probabilities of having an accident or in their “accident
proneness” which remain constant in time. This theory takes into consideration both
the factors random as well as non-random where the non-random factors refers to
indual’s psychology, explaining in this way, more or less, why the indual’s have
unequal accident proneness. Taking these situations into consideration, Greenwood
and Woods (1919), obtained that the number of accidents N has a negative binomial

distribution with parameter k and é ie.,

k+n-]
P(N:n)=( ' )v"(1+v)"+k n=012,......

Consul (1989) also described the use of GPD model in an accident theory and
applied it to a number of data sets pertaining to Shunting accidents, home injuries,
and strikes in industries and obtained a better fit as compared to poisson and negative
binomial distribution. The GPD model is

n—1 ,~(A+nf)
P(N=n)=l(/l+n0f1/ e ,
He also gave the interpretation of the parameters-the parameter A represents the
“accident proneness” and @ represents the “rate of restitution process” of the subject
under study.
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The Irwin’s theory of “proneness-liability” model which assumes also that the
non-random factors can be further split into psychological and external factors
provides more explanation as to why some indual’s in the population tend to have
more accidents than others. In the context of this model, the indual accident
proneness does not remain constant, because the population is exposed to a variable
risk. In his model, Irwin used the term “accident proneness” to refer to a person’s
predisposition to accidents, and the term “accident-liability” to refer to a person’s
exposure to external risk of the accident and he derived the univariate generalized
Waring distribution as the distribution of number of accidents. Irwin (1975b) applied
this model to data on accidents sustained by men in a soap factory, providing an
improved fit as compared to the negative binomial.

In fact, Irwin derived his model by compounding the parameter of Poisson
distribution with gamma distribution thus resulting in NBD which when compounded
with beta- /] distribution gives Irwin’s model. This model is one interesting member
of the family of mixed Poisson distribution. Making this as basis, here, we have made
an attempt to derive the distribution of the number of accidents N in the light of
Irwin’s theory starting with the restricted Consul and Jain’s (1973) GPD model

n n=i -
P(N=n) A tnal e n=012,..... @.1)

As per the interpretation of the Consul (1989), the parameter A represents the
“accident proneness” and @=aA represents the “rate of restitution process” of the
subject under study. In the light of Irwin’s theory, the indual accident proneness does
not remain constant in time, and thus if we allow the parameter A in the model (4.1)

to follow gamma distribution with parameters k and é i.e. Afor given v is a random

variable with density given by

VT ke 42
f(}“/v)‘l"(k)l e A20 4.2)
and then on compounding (4.1) through the values of A by (4.2), we get the
distribution of the number of accidents N as the quasi-negative binomial distribution

k+n-1 V—k(] + na)n—l
P(N:n)=( ) )(1+v"+na)"*” n=012,....
Taking @ =av , the distribution becomes
k+n-1 n-1I
p(N=n)=( ' )% n=012,... (4.3)

Where (k,v,0) represents the parameters of the QNBD.

Hence, in the light of Irwin’s theory of “proneness-liability” model, the QNB model
explains both the variations in accident-proneness as well as in accident-liabilities of
the subject under consideration..

5. APPLICATION OF QNBD MODEL IN SHUNTING ACCIDENTS, HOME INJURIES,
AND STRIKES IN INDUSTRIES

In this section, we are more interested in the fitting of the proposed model and its
comparison with the GPD model but not in the application of the chi-square test for
testing the significance of the discrepancies between the observed and expected
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frequencies as the degree of freedom provided by most of the data sets (tables (5.1)-
(5.4)) for the proposed mode! is Zero which makes the chi-square test of significance
invalid.

The data sets in tables (5.1) to (5.3) were previously used by Adelstein (1952) for
Poisson and negative binomial distributions and concluded that the negative binomial
fits well than Poisson distribution. Consul (1989a) used the same data sets for GPD
model and reached to a conclusion that GPD model gives best fit than Poisson and
negative binomial distributions, for more explanation and details; see GPD Consul
(1989), pages 117-121. Here, we applied the proposed model to the same data sets.
The parameters of the proposed model have been estimated by ML method with the
help of a computer programme in R-soft wear.

TABLE 5.1

Comparison of observed frequencies for first-year shunting accidents and for a five
year record of experienced men with expected QNBD frequencies for different age
groups.

No.of Age21-25yr | Age 26-30 yr Age 31-35 yr S-yr record for
. experience
accidents
Obs. | QNBD | Obs. | QNBD | Obs. QNBD | Obs. | QNBD
0 80 | 76.30 121 123.39 80 80.29 | 54 51.20
1 56 65.15 85 80.18 61 60.28 | 60 62.74
2 30 23.50 19 20.66 13 13.56 | 36 40.51
3 4} 5.10 1 2.61 1 0.86 |21 18.35
>4 0 1 0.16 |0 0.01 |11 9.26
Total 170 | 170 227 | 227 155 |155 | 182 | 182
ML a=21.94218080|a=21.942168064 |a=38.1442428 {a=41.94190
Estimate 9, =0.037215153 0] =0.028172153 91 =0.0173925 91 =0.03070
92 =-0.00369338 92 =-0.00347625 02 =-.00365469 - 92 =0.00046
3.504626 0.683468 0.05219945 1.48454




Comparison of observed frequencies of accidents of 122 experienced shunting men

TABLE 5.2

On Some Models Leading to Quasi-Negative-Binomial Distribution

over 11 years (1937-1947) with expected QNBD frequencies

No.of 1937-1942 1943-1947 1937-1947
accidents | Obs. QNBD | Obs. QNBD Obs. QNBD
0 40 39.86 | 50 50.88 21 20.07
1 39 39.68 | 43 40.52 31 30.55
2 26 2380 |17 19.51 26 27.53
3 8 1124 |9 7.46 19 19.29
4 6 465 |2 7 11.66
5 2 3.63 9 6.43
6 1} 271 1 9 6.47
Total 122 122 122 122 122 122
ML a=2194214414 a=11209125667 | a=31.942233844
Estimate | 6,=  0.05230512 6,=  0.081133953 6,=0.058137631
6,= 000419414 6,=  0.004864953 0,=0.004578100
22 1.560489 0.917171 4.018035
TABLE 5.3

Comparison of observed frequencies for home injuries of 122 experienced men
during 11 years (1937-1947) with the expected QNBD frequencies

No.of | 1937-1942 1943-1947 1937-1947

Injuries | Obs. QNBD | Obs. QNBD | Obs. QNBD
0 73 7323 |88 87.92 58 57.07
1 36 3534 |18 18.78 34 34.68
2 10 10.3 11 9.71 14 16.63
3 2 4 8 7.50
4 1 } 3.05 1} 5.59 6
5 - - ; - 2} 0.12

Total 122 122 122 122 122 122

ML a=6.929456168 a=0.2276245 a=32.942033133

Estimate |6,=  0.0764229766,= 3.2170325 9,=0.023331560

6,=0.002652596  |9,=-0.6553422 ¢,=0.006401901
4 0.0277794 0.2661209 1055267

After close examination of the data sets in tables (5.1) to (5.3) we conclude that
the proposed model fits well than GPD model except that the aggregated data in the
last columns of table (5.1) and table (5.2). As explained in section 4 of this paper, the
best fit obtained is due to the fact that the proposed model explains both the variation
in accident-proneness as well as in accident-liabilities of the subject under study.
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Now, we present more data sets in table (5.4) on the number of strikes in 4-week
periods in four leading industries in the united Kingdom during (1948-1959) were
previously used by Kendall (1961) and concluded that the aggregate data for the four
industries agrees with the poisson law but that it does not hold that well for the indual
industries. Consul (1989) used the same data sets for GPD model and observed that
the data follows GPD model in Vehicle manufacturing industry, Ship-building
industry, and Transport industry but that the pattern in the Coal-mining industry can
not be well described by GPD model. We also applied the proposed model to the
same data sets and the expected frequencies are shown in table (5.4), the parameters
have been estimated by ML method with the help of a computer programme in R-soft
wear.

TABLE 5.4

Comparison of observed frequencies of the number of outbreaks of strike in four
leading industries in the UK. during (1948-1959) with the expected QNBD
frequencies

No.of Coal mining | Vehicle Ship building Transport
outbreaks manufacture
Obs. | QNBD | Obs. | QNBD | Obs. QNBD | Obs. | QNBD
0 46 50.22 110 109.79 117 116.73 | 114 | 114.84
1 76 65.42 33 33.45 29 30.27 | 35 31.90
2 24 32.29 9 9.19 9 6.94 4 7.23
3 9} 8.07 |3 357 |0 2.06 |2 2.03
>4 1 1 1 1
Total | 156 | 156 156 | 156 156|156 | 156 | 156
ML a=32.94235746 |a=37.94234634 |a=38.942347767 |a=732.09423493
Estimate |6, =0.035003245/, =0.009301366 |6, =0.007475730 |6, =0.009588379)
6,=-0.00475275|6,=0.003574957 |0,=0.00273226 |0,= 0.00283426 |
4.655564 0.06217639 1.210815 2.213897

After comparing the chi-square values of the proposed model with the GPD model
we did not find any improvement in fitting by the proposed model for the table (5.4)
and observed almost equal fit.
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