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Abstract

To test for the serial dependence in time series of counts data, Jung and Tremayne (2003) evaluated the size
and power of several tests under the class of INARMA models based on binomial thinning operations for Poisson
marginal distributions. The overdispersion phenomenon(i.e., a variance greater than the expectation) is common
in the real world. Overdispersed count data can be modeled by using alternative thinning operations such as
random coeflicient thinning, iterated thinning, and quasi-binomial thinning. Such thinning operations can lead
to time series models of counts with negative binomial or generalized Poisson marginal distributions. This paper
examines whether the test statistics used by Jung and Tremayne (2003) on serial dependence in time series of
counts data are affected by overdispersion.

Keywords: Overdispersion, negative binomial, generalized Poisson, time series of counts data,
serial dependence.

1. Introduction

Time series of counts are commonly observed in a wide range of real-world applications and there
is increased research interest in their analysis for time series modeling. The starting point is the test
for serial dependence in data. Recently, Jung and Tremayne (2003) proposed several tests for serial
correlation and evaluated the size and power of those tests against integer-valued autoregressive mov-
ing average(INARMA) models with Poisson marginal distributions. INARMA models, introduced by
McKenzie (1985), use binomial thinning instead of scalar multiplication, and their correlation struc-
ture is similar to that of Gaussian ARMA models. In particular, the INAR(1) model using a binomial
thinning operator can be applied to Poisson, negative binomial(NB), and generalized Poisson(GP)
marginal distributions.

Our concern here is the behavior of the test statistics in Jung and Tremayne (2003) under the
overdispersed INAR(1) model. Because the INAR(1) model is stationary, its innovation distribution
is determined by its marginal distribution. The simplest Poisson INAR(1) model with a Poisson
marginal distribution has Poisson innovations, which may be appropriate for modeling the time series
of equi-dispersed small counts. Aside from the Poisson INAR(1) model, the explicit derivation of
innovation distributions of the INAR(1) model is not easy. For the case of NB marginal, it can be
derived in a quite complicated form, but it is not possible for the case of GP marginal, see Weil3
(2008).

The INAR(1) model has undergone various generalizations to overcome this limitation, including
the random-coefficient INAR(1) model with an NB marginal distribution (Zheng et al., 2007), the
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iterated-thinning INAR(1) model with an NB distribution (Al-Osh and Aly, 1992), the quasi-binomial
thinning INAR(1) model with a GP marginal distribution (Alzaid and Al-Osh, 1993).

As mentioned earlier, Jung and Tremayne (2003) used Monte Carlo techniques to evaluate the
size and power properties of their proposed tests against INARMA models using binomial thinning
operations; all of the models considered had Poisson marginal distributions.

The present paper examines the behavior of test statistics in Jung and Tremayne (2003) under
various INAR(1) models. The rest of this paper proceeds as follows: Section 2 provides a brief
overview of the INAR(1) models used for the comparison, including the random-coefficient INAR(1)
model with an NB marginal distribution, the iterated-thinning INAR(1) model with an NB marginal
distribution, and the quasi-binomial thinning INAR(1) model with a GP marginal distribution. Section
3 presents test statistics for the presence of serial dependence in the time series of counts. Section 4.1
provides the results of Monte Carlo simulation studies for the size properties of the test statistics under
the null of i.i.d. Poisson, NB, and GP variables. Jung and Tremayne (2003) examined the size of the
test statistics under the null of i.i.d. Poisson, NB variables for a few cases, but we conducted a large
number of Monte Carlo studies focusing on overdispersion. Section 4.2 provides the empirical power
of the tests against several INAR(1) models presented in Section 2. Section 5 concludes this study.

2. Model Description

This section briefly introduces NB and GP distributions, which can be marginal distributions of
INAR(1) models, and summarizes several INAR(1) models with those distributions as marginal dis-
tributions.

The probability mass function(pmf) of the NB distribution with parameters r and p, denoted by
NB(7, p), is

I'r+y)
yIL(r)

It is well known that the NB distribution is a mixed Poisson distribution with a gamma mixing distri-
bution, so

P(Y =y|r,p) = pPad-py, y=0,1,...,r>0,0<p<1.

PY =y|lu,a) =

sl (5

y
s >0, a>0,
T HTy+ D\a ! +u ,u+a‘1) K «

with E(y |y, @) = u, Var(y|p, @) = p(l + au). Mixed Poisson distributions have overdispersion
characteristics and have larger proportion of zeros than Poisson distributions. Therefore, the use of
the mixed Poisson distribution can help us improve with respect to overdispersion and with respect to
zero inflation (Nikoloulopoulos and Karlis, 2008).

Consul and Jain (1973) introduced the generalized Poisson(GP) distribution with a pmf, GP(4, ),
which is given by

_1-0
/l(/l+6x)x“L'x), x=0.1....,
X!

0, for x > m when 6 < 0,

P(X =x16,2) :{

where A > 0, max(—1,—-1/m) < 8 < 1, m > 4. The GP distribution reduces to the Poisson distribution
when 8 = 0. The mean and variance of the GP distribution are E(X) = A/(1 — 0) and Var(X) =
1/(1-6)3. Therefore, the variance of the GP distribution can be greater or less than its mean depending
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Table 1: The relation between parameters and mean i, variance o> of NB and GP distribution.
7)

Distribution mean p variance 0" Parameters
1- 1- ?
NB rd-p rd-p po K P
p p? o2 —p a?
A A M M
GP — —_— A= Ealt 0=1- .12
[ (1—9p ar o2

on whether 6 is positive or negative. Recently, Joe and Zhu (2005) proved that GP is a mixed Poisson
distribution when 6 > 0.

Table 1 shows the mean y and variance o of these two distributions as functions of their param-
eters and vice versa. Refer to Nikoloulopoulos and Karlis (2008) and Joe and Zhu (2005) for more
information on the properties of NB and GP distributions.

2.1. The INAR(1) model with a Poisson marginal distribution

When the observed time series are a low frequency count, the autoregressive moving average(ARMA)
models cannot be applied to an integer-valued case. Because multiplying an integer by a real number
generally does not give an integer value, there is a need for an operation with similar properties that
can replace the scalar multiplication in ARMA models. One option is the thinning operation that is
a probabilistic operation that can be applied to non-negative integer-valued random variables. For a
given X = x with a range Ny, x can be the number of some objects produced, the number of some
events. Thinning operations select some objects of x due to a certain random selection.

The Binomial Thinning Operation by Steutel and van Harn (1979) is the most popular thinning
operation. Let X be a non-negative integer-valued random variable. For p € [0, 1], define the random
variable

X
poX=) Y @.1)
i=1

where {Y;} are i.i.d. Bernoulli random variables independent of X such that P(Y; = 1) = 1 — P(Y; =
0) =p.
The INAR(1) model introduced by McKenzie (1985) and Al-Osh and Alzaid (1987) is

Xi;=poXi+é&, (2.2)

where all thinning operations are performed independently of each other and of {&;} and the thinning
operations at 7 and {&,} are independent of {X;, s < 1}.

In particular, if {&;} is i.i.d. Poisson(1) and X is Poisson(1/(1 — p)), then the marginal distribution
{X;} is Poisson(1/(1 — p)) and is called the Poisson INAR(1) model. The Poisson INAR(1) model is
the simplest INAR(1) model and is appropriate for modeling the time series of equi-dispersed counts.

2.2. The INAR(1) model with a negative binomial marginal distribution(NB-INAR(1))

Weifl (2008) showed that in the case of NB marginals, the probability mass function of &, in Equation
(2.2)is

(1= -p)1-p)", k=0,
P(g; = k) = C n\ u-m _\m m+k—1 _ okm (23)
Z(m)p (1 p)( L )(1 PP k>0,

m=1
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Because Equation (2.3) is complex, the NB-INAR(1) model may not be practical for real-world ap-
plications, and it is a possible reason why previous studies have considered other thinning operations.

2.3. The random-coefficient INAR(1) model with a negative binomial marginal
distribution(NB-RCINAR(1))

In some situations, the parameter p in Equation (2.2) may vary with time and be random. For example,
let X; denote the number of terminally ill patients in the #th month. Then we can assume that X;
temporarily satisfies the INAR(1) model, where p o X;_; is the number of surviving patients from the
previous month and &; indicates newly admitted patients in the current month. However, the survival
rate p can vary randomly over time because of various environmental factors such as the quality of
health care and the health of the patient. Joe (1996) and Zheng et al. (2007) extended the binomial
thinning in Equation (2.1) to Random-Coefficient Thinning by replacing the fixed p with a random
parameter p, and considering p, as the realizations of i.i.d. random variables taking values in the
interval [0, 1).
A process {X;} is an RCINAR(1) model with NB marginals NB(n, p) if

X; =PBnio X1 +&, Xo~NB(m,p), (2.4)

where {g;} is i.i.d. NB(n(l — p), p); {8} is i.i.d. Beta(np,n(l — p)), that is, E(B,,;) = p, Var(B,,) =
p(1 —p)/(n+ 1) independent of {,}; and each g, is independent of {X, s < t}.

2.4. The iterated-thinning INAR(1) model with a negative binomial marginal
distribution(NB-1INAR(1))

Al-Osh and Aly (1992) generalized binomial thinning operations to iterated thinning operations as
follows:

(ap)oX

P X = Z Y, O<a,p<], 2.5)
i=1

where Y; are i.i.d. NB(l,a/(1 + @)), which are independent of both X and the thinning (ap) o X.
Here (ap) o X selects (ap) o X among X individuals, and then each selected individuals give a random
response Y independently of other selected individuals.

Let0 < @, p < 1 and {g} be an i.i.d. NB(n, @/(1 +@)). Then, assuming that all thinning operations
are performed independently; independent {g,} and that the thinnings at time ¢ and &, are independent
of {Xj, s < t}, the process {X;} defined by the recursion

1-
Xi=p* Xis1 +&, t21, XO"NB(” a(—p))’

) 2.6
1+a(l-p) 2:6)
has a marginal distribution NB(%, a(1 — p)/(1 + a(1 — p))).

2.5. The quasi-binomial thinning INAR(1) model with a generalized Poisson marginal
distribution(GP-QINAR(1))

The quasi-binomial thinning INAR(1) model proposed by Alzaid and Al-Osh (1993) is defined as

X =poro X1 + &, 2.7
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Table 2: The comparison of several models-marginal mean and marginal variance

Model EX,) Var(X;) EX, 1 X,1)
2
. +
NB-INAR(1) Mo Ple 7 T¢ 0Xiet + s
1-p 1-p?
- 1- 1-p)1 -
NB-RCINAR(1) nd = p) sz) Xy 4 A=A =P)
P p P
n n(1+a(l -p)) n
NB-IINAR(1 _r el —p) X+ 2
M a(l-p) (@(1-p)? PRt
Pl Pl A1 -p)
P-QINAR(1 L. X,
GP-Q 0 -0 (-6 pXi-1 + —o

where g are i.i.d. GP((1 — p)A4,60) and Xy ~ GP(4,6). The pg, o X;—1 in Equation (2.7) is called the
quasi-binomial thinning operation and is defined as follows. If X;_; = x is given, then py, © X,_; has
a quasi-binomial distribution with parameters (x, p, 6/ 1), that is,

p(1 —p)(f) (+i5) (1-p+G- i)z)m

0 x—1
(1 +x—)
A

If the thinnings in Equation (2.7) are performed independently of each other and the thinning at time
t and &, are independent of {X;, s < ¢}, then {X;} is a stationary process with a marginal distribution
GP(4, 6).

Table 2 summarizes the mean, variance, and conditional mean of the abovementioned models.
Note that all models have the same autocorrelation function, Corr(X,, X,_;) = pk , which is similar to
that of the AR(1) process except that it is nonnegative. For a thorough review of thinning operations,
the reader is referred to Weif3 (2008).

i-1

P(pgroXim1 =il Xm =x) = , i=0,1,...,x

3. Test Statistics for the Presence of Serial Independence

In this section we briefly enumerate the test statistics for the presence of serial dependence in count
data {x, ..., xr} (for more information, see Jung and Tremayne (2003)). We also consider the Ljung
and Box (1978) statistic, which is commonly available in statistical software package.

The Wald-Wolfowitz test (1940) test, also known as the Runs test for randomness, is used to test
the hypothesis that a series of counts is random. The first step in the runs test is the centering of data
about their mean, and the statistic Z is defined as

7 = R-E®R) 3.1
 Var®)’ '

where R is the number of runs, E(R) = 2nm/(n + m)) + 1 and Var(R) = 2nm(2nm — n — m))/((n +
m)*(n + m — 1)) in which 7 is the number of positive runs and m is the number of negative runs. The
statistic Z is asymptotically distributed as N(0, 1) under the independence of the observable series of
counts.

Freeland (1998) proposed the score statistic S defined as

(VTS (- %) (- %)
- >LX

: (3.2)
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where X is the sample mean. Under the null of i.i.d. Poisson variables, S i N(0,1). A modified S*
is defined as

VT EL (X - X) (X - X)
sh(x-x7

Note that S * differs from S with respect to the denominator term, which makes it preferable if overdis-

S*

(3.3)

persion is present. Also S* 4 N(0, 1) under hypothesis of i.i.d. Poisson random variables.
Under the null hypothesis of i.i.d. random variables, the adapted version of the statistic given in
Venkataraman (1982) is

2
(| (- XY
Qucr(k) = ; G4
=2 (%=X (Xrs - X)

where
A S (X, - X) (Xt—i - X)

o SL(x-x)

is the i""-order sample autocorrelation.
The second portmanteau-type test is an adapted version of Mills and Seneta (1989):

@[ -x7|
i+1 =1\t~

Q ac (k) =

or®= S (X~ X) (X~ X)

-, (3.5)

where @, is the k”*-order sample partial autocorrelation. Under the null of i.i.d. variables, the limiting
distribution of Qg.r(k) and Qpucr(k) is the x? distribution with the degree of freedom k.

Finally, we consider the Ljung and Box (1978) statistic. Although the statistic was not compared
in Jung and Tremayne (2003), it is easily available in a statistical software package,

kA2
LB(k)=T(T +2) » ——. 3.6
(k) = T( )Z‘ T (3.6)
Under the null i.i.d. variables, LB(k) 4 x(k).
We can note three facts.
(i) The LB(k) statistic is based on the 1%,. .., k™ sample autocorrelation functions, Q,.r(k) uses

2 (k+ D7 sample autocorrelation functions.

(ii) Because of S* = VTpy, S* 4 N(0, 1) under the null of i.i.d. variables.

(iii) As mentioned, the limiting distribution of Qg (k) and Q. f(k) are the x? distribution with the
degree of freedom k under the null of i.i.d.variables (Mills and Seneta, 1989; Jung and Tremayne,
20006).
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Table 3: Rejection percentages under the independence of the tests under the i.i.d. Poisson assumption at the
nominal 5% significance level.

2 Test T =50 T =100 T =500
Z 6.84 6.32 6.02
S 3.14 4.16 4.39
S* 3.28 4.18 4.44
Qucr(1) 475 4.96 5.44
Qacf(s) 5.07 4.74 5.03
5 Qucf(10) 591 5.50 5.38
Opacr(1) 5.62 5.44 5.39
Opacr(5) 5.12 5.00 498
Qpacf(10) 5.70 5.13 5.12
LB(1) 5.70 5.13 5.12
LB(5) 5.70 491 5.22
LB(10) 6.92 5.89 5.25
Z 6.11 6.09 5.24
S 3.38 4.15 4.32
S* 3.28 4.12 4.27
Oucr(1) 461 4.87 4.74
Qucr(S) 4.97 5.02 4.81
10 Qucr(10) 5.93 5.29 479
Opacr(1) 5.41 5.10 4.79
Opacf(5) 5.72 5.36 4.73
Opacy(10) 6.14 5.12 4.87
LB(1) 5.10 5.03 4.89
LB(5) 5.41 4.87 5.05
LB(10) 6.61 5.60 5.00
Z 5.94 5.33 5.43
S 3.22 3.60 4.44
S* 3.17 3.76 4.49
Qucr(1) 4.52 5.05 4.90
Qucr(5) 5.03 5.19 4.94
15 Qucr(10) 6.45 5.60 5.02
Qpacr(1) 5.02 5.35 4.86
Qpacf(5) 5.32 5.51 5.06
Opacy(10) 6.16 5.21 5.24
LB(1) 4.82 4.66 475
LB(5) 5.54 5.60 4.96
LB(10) 6.95 591 5.35

4. Monte Carlo Study

To examine the finite sample properties of tests, we conducted a Monte Carlo simulation. We will
examine the empirical size and power of several test statistics in Section 3, that is, Z, S, S*, Qucr(k),
Opacs(k), LB(k), k = 1, 5, 10. As mentioned in Section 3, Jung and Tremayne (2003) did not con-
sider LB(1), LB(5), LB(10). All the simulations are conducted using programs written in SAS/IML
procedure.

4.1. The Size of Tests

We generate a series {xi, ..., xy} from the Poisson, NB and GP distributions with E(X;) = 5,10, 15
and overdispersion (the variance-mean ratio) are set to d = 1.5, 5, 10 in the case of the NB and GP
distributions. The sample size are T = 50, 100,500 and the number of Monte Carlo replication
is 10,000. Jung and Tremayne (2003) examined the size of statistics under the null of the i.i.d.
Poisson(1), A = 1,5 and under the null of i.i.d. NB with E(X;) =1,5and d = 1.5, 3.
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Table 4: Rejection percentages under the independence of the tests under NB-overdispersion at the nominal 5%
significance level.

Test d=15" d=5 d=10
T=50 T=100 T=500 T=50 T=100 7 =500 T=50 T=100 17 =500

EX) =5

z 6.14 5.52 5.95 5.54 5.19 522 5.50 528 5.09
S 926 1114 12.53 2857 3109 34.69 3219 34.38 39.28
5 3.03 4.13 459 3.93 4.06 4.40 4.00 4.37 5.14
Qucr(1) 5.17 5.00 4.76 5.09 5.54 5.65 521 6.54 6.08
Quer(5) 5.11 4.89 5.09 4.62 5.80 531 5.19 7.46 7.90
Qucr(10) 5.95 5.27 5.12 5.57 6.39 5.65 6.28 8.37 8.95
Qpacs(1) 6.24 5.61 485 6.71 6.40 578 7.87 8.15 6.54
Opacs(5) 6.13 5.30 5.07 6.98 7.28 5.60 1041 10.37 8.46
Qpacs(10) 6.62 5.32 5.26 9.08 7.94 5.94 1414  12.54 9.65
LB(D) 4.65 5.31 4.66 4.28 4.22 438 3.58 3.88 4.47
LB(5) 5.07 5.18 4.94 431 4.46 4.40 3.84 4.44 4.55
LB(10) 6.34 5.79 5.29 4.67 4.93 483 4.27 4.32 474
EX) =10

z 572 5.07 5.48 522 4.90 5.06 5.53 4.88 521
S 923 1050 12.49 2885 3231 33.98 3476 36.92 40.80
s 2.93 3.60 4.38 3.36 4.17 4.47 4.02 4.43 4.96
Quer(1) 5.14 5.05 4.65 4.96 4.89 4.96 5.15 4.97 5.52
Qucr(5) 4.88 4.58 4.81 4.36 5.69 5.18 5.2 5.59 6.10
Qucr(10) 5.91 5.35 521 5.52 6.03 5.26 6.45 6.59 6.65
Opacy(1) 5.98 5.54 479 6.23 5.60 5.09 6.95 6.25 5.66
Qpacs(5) 5.69 4.87 4.97 6.31 6.46 5.29 8.17 7.13 6.29
Qpacy(10) 5.80 5.04 5.13 7.22 6.31 5.28 10.37 8.09 6.85
LB(I) 4.97 4.70 5.07 4.63 5.06 4.88 4.28 4.37 4.88
LB(5) 5.44 4.86 4.92 4.70 5.45 4.81 4.48 4.30 5.17
LB(10) 6.66 5.38 5.01 5.52 5.49 5.12 5.18 4.92 5.26
EX) =15

z 6.06 493 5.40 575 4.82 5.02 4.82 5.15 4.95
S 10.15  10.64 12.70 3017 32.63 36.00 3539  38.03 40.00
s* 3.53 3.70 4.59 3.80 4.07 491 3.62 3.95 4.60
Qucr(1) 4.82 5.06 5.31 4.59 5.01 4.97 5.07 4.97 5.33
Qucr(5) 4.64 5.11 5.19 4.67 5.36 5.09 4.98 5.34 521
Quer(10) 5.96 5.70 5.12 5.57 6.10 5.06 6.13 6.10 5.56
Qpacs(1) 5.58 5.44 5.30 5.85 5.70 5.08 6.30 5.82 5.42
Qpacs(5) 5.59 5.53 5.17 5.72 575 5.35 6.73 6.25 5.68
Qpacs(10) 571 5.66 5.18 6.42 6.67 5.19 8.17 7.41 5.83
LB(D) 5.54 5.00 5.12 472 5.09 5.04 4.28 4.54 4.81
LB(5) 533 5.12 5.42 470 5.01 5.15 479 4.67 5.16
LB(10) 6.66 5.78 5.19 5.64 5.69 521 5.45 531 5.03

Notes: d is overdispersion index defined by Var(X;)/E(X;).

Tables 3, 4 and 5 report the size performance under the three distributions at the 5% nominal size.
The numbers in bold indicate values outside the 95% confidence interval, which was calculated by
0.05+1.96 x 1/0.05 x (1 —0.05)/10000 = (0.0457,0.0543). We now summarize the results shown in
Tables 3, 4 and 5; some are the same as those in Jung and Tremayne (2003).

(1) Table 3 reports the rejection percentages of several tests under i.i.d. Poisson at the 5% nominal
size. The asymptotic theory of Qu.r(1) and Quf(5) supports the finite-sample behavior of these
test statistics, but the over-rejection of Q.¢(10) continue until the size reached 100. The S and
S* tests behave similarly; they tend to under-reject, and this tendency is weakened as the sample
size increases. Q,q.r(k) and LB(k), k = 1,5, 10 tend to over-reject, and this tendency is weakened
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Table 5: Rejection percentages under the independence of the tests under GP-overdispersion at the nominal 5%
significance level.

Test d=15" d=5 d=10
T=50 T=100 T =500 T=50 T=100 7 =500 T=50 T=100 T =500

EX)=5

Z 6.34 5.81 5.52 5.77 477 5.39 5.27 5.00 5.12
S 10.22 11.00 12.29 28.04 30.52 34.66 31.01 33.67 38.30
s* 3.59 3.83 478 337 4.35 5.33 4.09 4.27 5.00
Quer(1) 4.50 4.82 521 474 5.70 5.58 476 6.59 6.69
Qucr(5) 472 491 4.96 4.20 5.57 5.78 4.65 7.31 8.91
Qucf(10) 5.81 5.83 4.93 5.51 6.60 5.86 5.57 9.07 10.47
Qpacr(1) 571 5.42 5.27 6.61 6.80 5.72 7.49 8.63 7.30
Opacf(5) 5.81 5.14 5.11 7.46 7.31 5.84 10.29 10.33 9.74
Opacy(10) 6.35 5.20 4.83 9.67 8.79 6.25 14.43 14.10 11.42
LB(1) 5.00 4.54 4.96 3.80 4.14 477 3.24 3.64 4.51
LB(5) 5.07 4.88 5.17 3.89 4.38 4.60 341 3.98 4.82
LB(10) 6.20 5.76 5.12 4.67 470 478 3.53 4.25 477
EX,) = 10

Z 5.61 5.79 5.96 5.68 5.18 5.45 5.01 477 475
S 9.42 11.09 13.17 29.40 32.45 34.43 33.32 35.74 40.01
s* 3.26 3.62 4.98 3.67 4.24 477 3.89 4.32 476
Quer() 4.97 5.29 5.01 4.47 5.11 5.01 4.85 5.56 5.52
Qucf(5) 497 4.87 4.99 4.61 5.25 5.46 4.05 5.48 6.27
Qucf(10) 5.92 5.66 5.26 5.55 5.82 5.62 5.18 6.79 6.88
Opacs(1) 5.83 5.66 5.04 5.71 6.01 5.23 6.86 6.64 5.88
Qpact(5) 5.58 4.99 5.30 6.32 6.08 5.64 6.88 7.09 6.48
Qpacr(10) 5.70 5.17 5.03 8.01 6.72 5.75 10.06 9.34 7.38
LB(1) 5.44 5.18 5.16 470 4.87 491 372 437 4.88
LB(5) 5.39 4.97 5.49 4.80 4.58 4.93 3.65 433 5.15
LB(10) 6.51 5.80 5.14 5.74 531 5.27 3.99 4.65 4.88
EX,) =15

z 5.93 5.20 5.24 4.97 4.96 4.84 532 4.99 5.08
S 9.88 11.08 12.19 29.13 30.88 33.58 35.45 37.59 40.04
s* 3.69 4.01 4.16 3.34 3.73 4.53 3.92 4.27 4.54
Quer(1) 4.89 4.99 4.89 4.65 4.98 4.96 5.05 5.33 5.28
Qucf(3) 4.88 5.05 4.86 4.95 5.04 5.01 4.79 5.46 5.45
Quer(10) 6.04 5.47 5.20 5.89 5.82 5.02 5.28 6.43 6.25
Opacs(1) 5.81 5.39 4.93 5.62 5.54 5.06 6.85 6.26 5.64
Qpacr(5) 5.51 5.24 4.96 6.07 5.84 5.27 6.91 7.16 5.69
Qpacr(10) 5.98 5.17 5.32 7.06 6.31 5.21 8.98 8.11 6.16
LB(1) 4.99 4.85 4.41 4.81 4.98 4.81 4.24 4.49 4.88
LB(5) 5.53 491 481 4.80 4.88 471 4.17 4.56 4.67
LB(10) 6.54 5.90 5.18 5.70 5.15 5.07 5.06 5.10 495

Notes: d is overdispersion index defined by Var(X;)/E(X;).
considerably as the sample size increase.

(2) Table 4 shows the rejection percentages of the tests under the NB distribution at the 5% nominal
size. Because the scaling of S was based on the sample mean, overdispersion has a considerable
influence on the rejection percentage of S. The rejection percentage of S rapidly increases, and
this problem worsens as the sample size increases. For example, when d = 10,7 = 500 and
E(X;) = 5, the percentage is 39.28. By contrast, S* gives under-rejection percentages, which are
similar to those in Table 3. The Q. (k) and Q. r(k) tests are affected by overdispersion, but this
problem is not as serious as that for S. In the case of E(X;) = 5, the highest rejection percentage
is 14.14. Overdispersion influences Q,.s(k2) considerably more than Q,.r(k;) when k; < k, and
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Figure 1: Power curves for tests under Poisson INAR(1) alternative, based on 5% level(rn —Z, O - S*, O —
Qucr(1), ® = Qpacr(1), § = LB(1))

influences Qpucr(k2) more than Qp.cr(ki) when ki < k. For the Qucr(k) and Qpqcr(k) tests, the
over-rejection percentages decrease as the process mean increases. Unexpectedly, the LB test
exhibits under-rejection for d = 1.5 and over-rejection for d = 5, 10 when E(X;) = 5; this pattern
disappears as the process mean increases to 15.

(3) Table 5 shows the results under the GP distribution at the 5% nominal size. The values and
patterns are similar to those in Table 4. The results suggest that discriminating between the NB
and GP distributions does not affect the behavior of the tests.

4.2. Monte Carlo Power Properties

We examine the finite-sample power properties of the tests in Section 3 through Monte Carlo sim-
ulations; the sample size is T = 100 and the number of replications is 10,000. Because the aim of
this paper is to examine the behavior of the tests under various INAR(1) models discussed in Section
3, we analyze these models as alternative models: the random-coefficient INAR(1) model with an
NB marginal distribution, the iterated-thinning INAR(1) model with an NB marginal distribution, and
the quasi-binomial thinning INAR(1) model with a GP marginal distribution. Maintaining the same
mean and overdispersion of the immigration process for the three models, we examine how the test
statistics would differ against each alternative model. We consider the values E(g;) = 5, 10 and the
values d = Var(g,)/E(X;) = 1.5,5 and 10. Any departure from the null of i.i.d. variables is captured
by the same parameter p for all three models; the p values are 0.1,0.2,...,0.9.

We rule out the S test because of its performance(Tables 4 and 5). In addition, as pointed out
in Jung and Tremayne (2003), we do not report the results for Qu.r(k), Qpacr(k) and LB(k), k =
5, 10, because the power of tests is a declining function of the degree-of-freedom index for a given
noncentrality parameter; this is confirmed by our experiments. Jung and Tremayne (2003) used
size-adjusted critical values from their response surface analysis to evaluate the power of tests under
the Poisson INAR(1), Poisson INMA(1) and Poisson INAR(2) models. The present study does not
use a size-adjusted critical for the following reasons. As mentioned in Jung and Tremayne (2003),
the influence of size distortions introduced by use of asymptotic critical values is restricted to small
departures from the null. Obtaining size-adjusted critical values requires a response surface analysis
for each distribution, which is beyond the scope of the present study. Finally, the results of using a
size-unadjusted critical value might give useful information on the tests.

(1) Figure 1 presents the power curves for Z,5*, Qucr(1), Qpacs(1) and LB(1) under the Poisson
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Figure 2: Power curves for tests under NB-RCINAR(1) alternative, based on 5% level(a—Z, O—S", 0= Qg r(1),

(@)

o — Qpa«:f(l)’ ﬁ - LB(I))

INAR(1) model in Equation (2.2). Noteworthy is that the present study considers the LB(1)
test, which was not considered in Jung and Tremayne (2003). The power properties of LB(1)
and S* are competitive across all the parameters considered in our study. The results indicate
that the power of Z is slightly worse than that of $* and LB(1) and that the power of Qq.(1) is
inferior to that of Z. The power of Q,4.¢(1) is nearly 0. There is only a small difference between
the power of the tests using size-unadjusted critical values in our experiment and that of those
using size-adjusted critical values in Jung and Tremayne (2003); the maximum discrepancy is
approximately 0.1.

The changes of E(g;) effects slightly the power of Z among tests. Specifically, for each fixed p,
the power of Z decreases(range: 0 ~ 0.0535) as E(g;) increases.

We now consider the second alternative model, the NB-RCINAR(1) model in Equation (2.4).
We consider E(g;) = 5,10 and d = Var(e)/E(g;) = 1.5,5,10 and the correlation parameter
p = 0.1,0.2,...,0.9. The necessary parameters n, p, p in Equation (2.4) to generate xi,..., X7
are determined by the relation between the parameters and the mean/variance in Table 1. The
results shown in Figure 2 are summarized as follows. The order of power performance under the
NB-RCINAR(1) alternative is the same as that under the Poisson INAR(1) alternative of S* >
LB(1) > Z > Qucr(1) > Qpacr(1). Although the effects of d and E(g;) are not immediately clear
from Figure 2, for fixed p and E(g;), the power of Z changes as d varies. That is, an increase
in d leads to a slight increase in the power of Z. Indeed, the mean difference between d = 1.5
and d = 5 when E(g;) = 5 was —0.0138(range: —0.0375 ~ 0) and that between d = 1.5 and
d = 10 when E(g,) = 5 was —0.033(range: —0.0923 ~ 0). This phenomenon persists in the case
of E(g,) = 10. Although these values are very small, the differences are always negative, which
is inconsistent with the results under the Poisson INAR(1) model. As a result, Figure 2(c) shows
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Table 6: The mean of power difference of tests under alternative model

Alternative model

Test Difference NB-RCINAR(1) NB-IINAR(1) GP-QINAR(I)
diff12 Z0.0138 0.0187 20.0297
diff13 -0.0331 0.0422 -0.0362
5 diff23 -0.0192 0.0153 ~0.0064
diff45 -0.0076 0.0041 -0.0295
diff46 -0.0181 0.0163 -0.0353
diff56 ~0.0106 0.0071 ~0.0058
diff12 0.0121 0.0274 0.0459
diff13 0.0245 0.0584 0.0810
o diff23 0.0124 0.0177 0.0351
diff4s 0.0076 0.0133 0.0433
diff46 0.0155 0.0329 0.0805
diffS6 0.0079 0.0110 0.0372
diff12 0.0273 0.0470 0.0832
diff13 0.0570 0.0813 0.1359
diff23 0.0296 0.0540 0.0527
Qaer (D diff4s 0.0145 0.0284 0.0824
dift46 0.0307 0.0606 0.1335
diffS6 0.0162 0.0327 0.0511
diff12 0.0106 0.0278 0.0435
diff13 0.0212 0.0609 0.0761
LB diff23 0.0105 0.0193 0.0326
diff45 0.0076 0.0148 0.0412
dift46 0.0142 0.0344 0.0759
diff56 0.0066 0.0111 0.0347

Notes: Difference’ denotes following variables.

3

“

diff12 is difference between d = 1.5 and d = 5 when E(g;) = 5, diff13 is difference between d = 1.5 and d = 10
when E(g;) = 5, diff23 is difference between d = 5 and d = 10 when E(g;) = 5.

diff45 is difference between d = 1.5 and d = 5 when E(g;) = 10, diff46 is difference between d = 1.5 and d = 10
when E(g;) = 10, diff56 is difference between d = 5 and d = 10 E(g;) = 10.

an overlap between the power curves of LB and Z. Table 6 presents the mean differences in the
power of tests for fixed p. The power of S, Q.cr(1) and Qrg(1) tend to decrease as d increases,
whereas that of the other tests do not change as d varies.

The results under the alternative model NB-IINAR(1) are shown in Figure 3. The results indicate
no substantial changes. The most powerful test is S *, which is followed by LB(1) and Z, in that
order. Consistent with the results under the Poisson INAR(1) and NB-RCINAR(1) alternatives,
changes in d has a minimal effect on Z. The mean difference between d = 1.5 and d = 5 when
E(e;) = 51s 0.0187(range: 0.0054 ~ 0.0315) and that difference between d = 1.5 and d = 10
when E(g;) = 5 is 0.0422(range: 0.0164 ~ 0.0681). Noteworthy is that as d increases, its power
decreases, which is inconsistent with the results under the NB-RCINAR(1) alternative.

Figure 4 shows the results under the alternative model GP-QINAR(1). The notable findings are
as follows. First, d = 1.5 does not lead to changes in the order in the power of the tests, that
i, §* > LB > (1) > Z > Quer(1) > Qpacs(1). However, for d = 5,10, the order of power
performance is Z > §* > LB(1) > Quf(1), that is, the Z test dominates the other tests, which
is inconsistent with the results under the Poisson INAR(1), NB-RCINAR(1) and NB-IINAR(1)
models. Second, for d = 5, 10, the power of Qqf(1) is less than 0.3 until p became 0.5. Third, for
fixed p and E(g;), the power of Z increases as d increases, but that of §* decrease.
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Figure 3: Power curves for tests under NB-IINAR(1) alternative, based on 5% level(a —Z, O = S*, 0 = Qg r(1),
® — Qpacs(1), # = LB(1))
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Figure 4: Power curves for tests under GP-QINAR(1) alternative, based on 5% level(A—Z, O —S*, 0= Qucr(1),
- Qpacf(l)’ ﬁ - LB(I))
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(5) Table 6 presents the mean differences in the power of the tests for fixed p; the third, fourth,
and fifth column indicate the results under NB-RCINAR(1), NB-IINAR(1) and GP-INAR(1),
respectively. The key observation is that for fixed p, E(g;), the mean of the power difference in
S, Quer(1) and Qpp(1) tend to decrease under all models as d increase because the values for
diff12, diff13, diff23, diff45, diff46 and dift56 are positive. The largest decrease is under the
GP-QINAR(1) model because the values under the GP-QINAR(1) model are the largest.

5. Conclusion

In this paper, we revisited several tests for serial dependence in the times series of counts in Jung and
Tremayne (2003) to evaluate their behavior under various overdispersed models. We compared the
size and power of the runs test Z, the modified score test S*, two portmanteau-type tests Q,.¢(1) and
Opacs(1), and the Ljung and Box test LB(1), which was not considered in Jung and Tremayne (2003).
The alternative models considered were the INAR(1) model with a Poisson marginal distribution, the
random-coefficient INAR(1) model with a negative binomial marginal distribution(NB-INAR(1)), the
iterative-thinning INAR(1) model with a negative binomial marginal distribution(NB-IINAR(1)), and
the quasi-binomial thinning INAR(1) model with a generalized Poisson marginal distribution(GP-
QINAR(1)). The results of Monte Carlo simulations indicate that the overdispersion of the immigra-
tion process as well as the choice of the alternative model can affect the power performance of the
tests. In general, the most powerful test was $*, which was followed by LB(1), Z and Q,.f(1), in that
order. However, the order was Z > §* > LB(1) > Qycr(1) for some cases. The Q,4.(1) test had no
power because we considered only first-order autoregressive models.

For fixed autocorrelation parameter p and the mean of immigration process, as the overdispersion
of the immigration process increase, the power of S*, Q,.(1) and Qg(1) tests tended to decrease and
this tendency was the most under the GP-QINAR(1) model.
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