• Title/Summary/Keyword: binomial statistics

Search Result 173, Processing Time 0.028 seconds

ESTIMATING THE SIMULTANEOUS CONFIDENCE LEVELS FOR THE DIFFERENCE OF PROPORTIONS FROM MULTIVARIATE BINOMIAL DISTRIBUTIONS

  • Jeong, Hyeong-Chul;Jhun, Myoung-Shic;Lee, Jae-Won
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.3
    • /
    • pp.397-410
    • /
    • 2007
  • For the two groups data from multivariate binomial distribution, we consider a bootstrap approach to inferring the simultaneous confidence level and its standard error of a collection of the dependent confidence intervals for the difference of proportions with an experimentwise error rate at the a level are presented. The bootstrap method is used to estimate the simultaneous confidence probability for the difference of proportions.

Penalized Likelihood Regression with Negative Binomial Data with Unknown Shape Parameter

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.23-32
    • /
    • 2007
  • We consider penalized likelihood regression with data from the negative binomial distribution with unknown shape parameter. Smoothing parameter selection and asymptotically efficient low dimensional approximations are employed for negative binomial data along with shape parameter estimation through several different algorithms.

The UMVUE and MLE of the Tail Probability in Discrete Model

  • Woo, Jung-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1405-1412
    • /
    • 2006
  • We shall derive the UMVUE of the tail probability in Poisson, Binomial, and negative Binomial distributions, and compare means squared errors of the UMVUE and the MLE of the tail probability in each case.

  • PDF

Approximation of binomial Distribution via Dynamic Graphics

  • Lee, Kee-Won
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.821-830
    • /
    • 1999
  • In This paper we calculate the probabilities of binomial and Poisson distributions when n or${\mu}$ is large. Based on this calculation we consider the normal approximation to the binomial and binomial approximation to Poisson. We implement this approximation via CGI and dynamic graphs. These implementation are made available through the internet.

  • PDF

Bayesian Analysis for Random Effects Binomial Regression

  • Kim, Dal-Ho;Kim, Eun-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.817-827
    • /
    • 2000
  • In this paper, we investigate the Bayesian approach to random effect binomial regression models with improper prior due to the absence of information on parameter. We also propose a method of estimating the posterior moments and prediction and discuss some general methods for studying model assessment. The methodology is illustrated with Crowder's Seeds Data. Markov Chain Monte Carlo techniques are used to overcome the computational difficulties.

  • PDF

Comparison of Three Binomial-related Models in the Estimation of Correlations

  • Moon, Myung-Sang
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.585-594
    • /
    • 2003
  • It has been generally recognized that conventional binomial or Poisson model provides poor fits to the actual correlated binary data due to the extra-binomial variation. A number of generalized statistical models have been proposed to account for this additional variation. Among them, beta-binomial, correlated-binomial, and modified-binomial models are binomial-related models which are frequently used in modeling the sum of n correlated binary data. In many situations, it is reasonable to assume that n correlated binary data are exchangeable, which is a special case of correlated binary data. The sum of n exchangeable correlated binary data is modeled relatively well when the above three binomial-related models are applied. But the estimation results of correlation coefficient turn to be quite different. Hence, it is important to identify which model provides better estimates of model parameters(success probability, correlation coefficient). For this purpose, a small-scale simulation study is performed to compare the behavior of above three models.

A binomial CUSUM chart for monitoring type I right-censored Weibull lifetimes (제1형의 우측중도절단된 와이블 수명자료를 관리하는 이항 누적합 관리도)

  • Choi, Min-jae;Lee, Jaeheon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.823-833
    • /
    • 2016
  • The lifetime is a key characteristic of product quality. It is best to obtain the lifetime data of all samples, but they are often censored due to time or expense limitations. In this paper, we propose a binomial cumulative sum (CUSUM) chart to monitor the mean of type I right-censored Weibull lifetime data, for a xed value of the Weibull shape parameter. We compare the performance of the proposed binomial CUSUM chart with CUSUM charts studied previously using the steady-state average run length (ARL). The results show that the performance of the binomial CUSUM chart is better when the censoring rate is high and/or the sample size is small.

A maximum likelihood estimation method for a mixture of shifted binomial distributions

  • Oh, Changhyuck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.255-261
    • /
    • 2014
  • Many studies have estimated a mixture of binomial distributions. This paper considers an extension, a mixture of shifted binomial distributions, and the estimation of the distribution. The range of each component binomial distribution is rst evaluated and then for each possible value of shifted parameters, the EM algorithm is employed to estimate those parameters. From a set of possible value of shifted parameters and corresponding estimated parameters of the distribution, the likelihood of given data is determined. The simulation results verify the performance of the proposed method.

Tilted beta regression and beta-binomial regression models: Mean and variance modeling

  • Edilberto Cepeda-Cuervo
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.263-277
    • /
    • 2024
  • This paper proposes new parameterizations of the tilted beta binomial distribution, obtained from the combination of the binomial distribution and the tilted beta distribution, where the beta component of the mixture is parameterized as a function of their mean and variance. These new parameterized distributions include as particular cases the beta rectangular binomial and the beta binomial distributions. After that, we propose new linear regression models to deal with overdispersed binomial datasets. These new models are defined from the proposed new parameterization of the tilted beta binomial distribution, and assume regression structures for the mean and variance parameters. These new linear regression models are fitted by applying Bayesian methods and using the OpenBUGS software. The proposed regression models are fitted to a school absenteeism dataset and to the seeds germination rate according to the type seed and root.

Markov Chain Approach to Forecast in the Binomial Autoregressive Models

  • Kim, Hee-Young;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.3
    • /
    • pp.441-450
    • /
    • 2010
  • In this paper we consider the problem of forecasting binomial time series, modelled by the binomial autoregressive model. This paper considers proposed by McKenzie (1985) and is extended to a higher order by $Wei{\ss}$(2009). Since the binomial autoregressive model is a Markov chain, we can apply the earlier work of Bu and McCabe (2008) for integer valued autoregressive(INAR) model to the binomial autoregressive model. We will discuss how to compute the h-step-ahead forecast of the conditional probabilities of $X_{T+h}$ when T periods are used in fitting. Then we obtain the maximum likelihood estimator of binomial autoregressive model and use it to derive the maximum likelihood estimator of the h-step-ahead forecast of the conditional probabilities of $X_{T+h}$. The methodology is illustrated by applying it to a data set previously analyzed by $Wei{\ss}$(2009).