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Abstract

Many studies have estimated a mixture of binomial distributions. This paper con-
siders an extension, a mixture of shifted binomial distributions, and the estimation of
the distribution. The range of each component binomial distribution is first evaluated
and then for each possible value of shifted parameters, the EM algorithm is employed
to estimate those parameters. From a set of possible value of shifted parameters and
corresponding estimated parameters of the distribution, the likelihood of given data is
determined. The simulation results verify the performance of the proposed method.
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1. Introduction

Mixtures of distributions are of great interest in many disciplines for theory and applica-
tions (see McLachlan and Peel, 2001). Bonnini et al . (2012) consider a mixture of binomial
and uniform distributions and Domenico (2003), a mixture of uniform and shifted bino-
mial distributions. Lee and Oh (2006) and Oh (2006) investigate a method for estimating
parameters of a mixture of the shifted Poisson distributions. Many studies have estimated
a mixture of binomial distributions and its applications (Wasilewski, 1988; Blischke, 1964;
Johnson et al ., 2005; Liu, 2006; Park, 2013). This paper considers a method for estimating
parameters of a mixture of shifted binomial distributions, namely a mixture of generalized
binomial distributions, by using the EM algorithm. The EM algorithm, introduced in Demp-
ster et al . (1977), has become a widely popular technique (see McLachlan and Krishnan,
2008). When the EM algorithm is applied to a mixture of distributions of some specific type,
obtained data are expected to be incomplete. That is, the data set contains no information
on components that generate each data value. The E-step of EM algorithm estimates values
of components to get estimated complete data set. The shifted binomial distribution, con-
sidered by Čekanavičius (2009), has three parameters, and its probability function is given
by

f(x;m, θ, k) =

(
m

x− k

)
θx−ki (1− θ)m−x+k, x = k, k + 1, ..., k +m, (1.1)
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where θ is a real value between 0 and 1 and k is an integer. Here m is assumed to be a fixed
positive integer. If k is 0, then the probability function in (1) reduces to an ordinary binomial
probability function. The mean and variance of a random variable with the probability
function (1.1) are mθ + k and mθ(1 − θ), respectively. On the other hand, the probability
function of a mixture of shifted binomial distributions is given by

f(x; Φ) =

g∑
i=1

πif(x;mi, θi, ki) (1.2)

where g is the number of mixture components and πi, i = 1, ..., g is the weight for component
i with constraints 0 < πi < 1 and π1 + · · · + πg = 1. It is assumed that all mi are known
and equal to m. Here the notation Φ = (π1, ..., πg−1; θ1, ..., θg; k1, ..., kg) is adopted for all
parameters.

Because the probability function of a mixture of shifted binomial distributions is repre-
sented as a weighted linear combination of binomial probability functions, it is not easy to
obtain maximum likelihood estimates directly from the likelihood function by, for example,
differentiating it. Therefore, an iterative algorithm such as the EM algorithm is generally
applied.

Oh (2006) investigates a method for estimating parameters of a mixture of shifted Pois-
son distributions. The present paper adopts this methodology to estimate parameters of a
mixture of shifted binomial distributions.

For a mixture of shifted binomials, this paper examines a method for estimating param-
eters when no parameters are known. As in Oh (2006), for each possible value of the shift
parameter k based on observed data, other parameters are first estimated using the EM
algorithm, and then a value of k is selected using estimates of corresponding parameters
with the highest likelihood values.

2. The procedure of estimation

It is assumed that n observations, denoted by x = (x1, ..., xn) are obtained from the
mixture of shifted binomial distributions given in (1.2). Observed data have no information
on components, and therefore it is not possible to determine which component generates
each xj , j = 1, ..., n. In this sense, the data are regarded as incomplete ones carrying no
information on components and f(x; Φ) is referred as a probability function for incomplete
data.

For the given observation x, the log-likelihood function for Φ is given by

Lx(Φ) =

n∑
j=1

logf(xj ; Φ). (2.1)

The maximum likelihood estimate Φ̂x of Φ can be taken by finding the value of Φ that
maximizes the function Lx(Φ). However, it is well known that for a mixture of shifted bi-

nomial distributions, finding Φ̂x by differentiating the log-likelihood function is not feasible
because of the structural form of Lx(Φ). Therefore, by considering x as part of complete
data, the paper proposes a procedure based on the EM algorithm for finding local maximum
likelihood estimates. It is assumed that each observation xj , j = 1, ..., n, has no information
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on components. The component vector zj = (zj1, zj2, ..., zjg) is considered to denote infor-
mation on the component probability function generating xj . The elements zj1, zj2, ..., zjg
of the vector zj have a value 1 for components generating xj and 0 for others.

If observations and component information are both observed, the data (x1, z1), ..., (xn,zn)
are referred as complete data, and the log-likelihood for complete data is given by

Lx,z(Φ) =

g∑
i=1

n∑
j=1

zji {log πi + logfi(xj ;m, θi, ki)} . (2.2)

For complete data, maximum likelihood estimates of parameters can be obtained easily
from equation (2.2):

π̂i =

n∑
j=1

zji

n
, (2.3)

θ̂i =

n∑
j=1

zji(xj − k̂i)

m̂
n∑

j=1

zji

, i = 1, 2, ..., g.

Here, without loss of generality it is assumed that there is at least one observation from each
component distribution.

Because a situation of no observed component information is assumed, the estimate in
(2.3) cannot be directly obtained. To overcome this difficulty, component information is
estimated first. In the p+1-th iteration, the E step of the EM algorithm obtain the estimate

ẑji of components zji. Then the estimated values (x1, z
(p)
1 ), ..., (xn, z

(p)
n ) for complete data

are supplied to (2.3) for the estimates π̂i and θ̂i of πi and θi, respectively.
Consider a set of possible shift parameters with given observations, namely

K =
{
K = (k1, ..., kg) : x(1) −m = k1 < · · · < kg = x(n) +m

}
, (2.4)

for the estimation of the component zj , j = 1, ..., n, where x(1) = min(x1, ..., xn) and x(n) =
max(x1, ..., xn). Let the number of all possible elements of the set K be V and use the

notation K =
{
K(1), ...,K(V )

}
. For a fixed shift parameter K(v) = (k

(v)
1 , ..., k

(v)
g ), Oh (2006)

proposes a procedure for estimating ΦS = (π1, ..., πg; θ1, ..., θg) for a mixture of shifted

Poisson distributions. That is, for the fixed shift parameter K(v), let the initial value Φ
(p,v)
S =

(π
(p,v)
1 , ..., π

(p,v)
g ; θ

(p,v)
1 , ..., θ

(p,v)
g ) be given. If k

(v)
g < xj < k

(v)
g +m, then

z
(p+1,v)
ji =

π
(p,v)
i fi(xj ; θ

(p,v)
i , k

(v)
i )∑g

h=1 π
(p,v)
h fh(xj ; θ

(p,v)
h , k

(v)
i )

, i = 1, 2, ..., g. (2.5)

For the estimates of complete data (x1, z
(p+1,v)
1 ), ..., (xn, z

(p+1,v)
n ) in the p + 1-th iteration,
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they are denoted for the parameters by

π
(p+1,v)
i =

n∑
j=1

z
(p+1,v)
ji

n
,

θ
(p+1,v)
i =

n∑
j=1

z
(p+1,v)
ji (xj − k(v)i )

m
n∑

j=1

z
(p+1,v)
ji

, i = 1, ..., g. (2.6)

Let π
(p,v)
i ← π

(p+1,v)
i and θ

(p,v)
i ← θ

(p+1,v)
i , and repeat (2.5), and (2.6). If the estimates con-

verge, then let Φ
(∞,v)
S be Φ

(v)
S , and call it the estimate of ΦS given shift parameter K(v) =

(k
(v)
1 , ..., k

(v)
g ). Estimates of Φ corresponding K(v) are denoted by Φ(v) = (π

(v)
1 , ..., π

(v)
g ;

θ
(v)
1 , ..., θ

(v)
g ; k

(v)
1 , ..., k

(v)
g ). For Φ(v) obtained from all K(v) in the set of shifted parameters

K, estimates of the parameter Φ = (π1, ..., π; θ1, ..., θg; k1, ..., kg) are given as

Φ̂ = argmax
{
Lx(Φ(v))|v = 1, 2, ..., V

}
. (2.7)

In the estimation of the shift parameter, ΦS is estimated for all possible combination of
shift parameters for given data.

If the observation x is given, then the procedure for the estimation of parameters can be
summarized as follows:

Procedure for estimation of the parameters

Set the initial value: v ← 1.
Step 1: Set the value of the shift parameter K(v) = (k

(v)
1 , ..., k

(v)
g ) ∈ K.

Sub-step 1-1: Set p← 1.

Set the initial value Φ
(p,v)
S = (π

(p,v)
1 , ..., π

(p,v)
g ; θ

(p,v)
1 , ..., θ

(p,v)
g ) for ΦS .

Sub-step 1-2: For a given parameter Φ
(p,v)
S , obtain estimates z

(p+1,v)
1 , ..., z

(p+1,v)
n with

(2.4) or (2.5). With estimates of complete data (x1, z
(p+1,v)
1 ), ..., (xn, z

(p+1,v)
n ) and

the method in (2.6), obtain the estimate Φ
(p+1,v)
S .

Sub-step 1-3: If the condition for convergence is not satisfied, then go to sub-step 1-2

by setting p← p+ 1 and Φ
(p,v)
S ← Φ

(p+1,v)
S . If satisfied, then denote the estimate of

the parameter as Φ̂(v). If v < V , then set v ← v + 1 and go to step 1. If not, go to
step 2.

Step 2: Estimate the given parameter based on (2.7).

In sub-step 1-3, the condition for convergence is
∣∣Lx(Φ(p+1))− Lx(Φ(p))

∣∣ < δ. That is,
increment of the log-likelihood is some range of values. Here δ > 0 is an upper bound for
convergence.

3. Simulations

Monte Carlo simulations are conducted to evaluate the performance of the proposed
method. Here a mixture of binomial distributions with g=2 is considered. For each sim-
ulation, the number of repeats and sample size are set to 1000 and n = g× 50, respectively.
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Table 3.1 is for g=2, (θ1, θ2) = (0.5, 0.5), (k1, k2)=(0, 3), (0, 4), (0, 5), and (π1, π2)=(.7, .3),
(.6, .4), (.5, .5) and the values are sample means and standard errors (parentheses) for 1000
simulations. In each simulation n values of a mixture of shifted binomials are generated and
the procedure is applied to each data set to obtain the maximum likelihood estimate. The
sample means of estimated values for shift parameters are quite close to true values. On the
other hand, for each value of (π1, π2), as the value of k2 increases, the sample means ap-
proach true values, whereas the standard errors remain stable. This is expected in that when
two shift parameters are far apart, two components of a mixture distribution can be easily
identified. For each value of (k1, k2), there is a trend in which the value of π1 approaches
0.5 and the sample means of estimates of k1, k2, π1, π2, θ1, θ2 approach true parameter
values. For (k1, k2) =(0, 4), for example, the sample means of estimates of π1 =.7, .6, and
.5 are 0.693, 0.692, and 0.501, respectively, and their standard errors are quite similar. This
corresponds to the heuristic in that when ratios of two components of a mixture distribution
are similar, there is good estimation performance. For each (π1, π2), the sample means and
standard errors approach true values of the parameters as the difference between two shift
parameters increases. Overall, k1 tends to be under-estimated, whereas k2, over-estimated.
The sample means of estimates of π1 and π2 are all close to true values. The standard errors
of π1 and π2 in each case are the same because their sum is 1 and the variance of the sample
mean is nπ1π2.

Table 3.1 Sample means and standard errors of 1000 simulations with g=2, (θ1, θ2)=(0.5, 0.5)

(π1, π2) (k1, k2) π̂1 π̂2 k̂1 k̂2 θ̂1 θ̂2

0.7, 0.3

0, 3
0.697 0.303 -0.260 4.052 0.515 0.436

(0.164) (0.164) (1.909) (2.916) (0.191) (0.294)

0, 4
0.702 0.298 0.043 4.141 0.493 0.501

(0.089) (0.089) (1.589) (2.408) (0.157) (0.237)

0, 5
0.702 0.298 (0.007) 4.860 0.498 0.518

(0.059) (0.059) (1.607) (2.073) (0.156) (0.203)

0, 6
0.698 0.302 0.152 5.763 0.485 0.528

(0.052) (0.052) (1.520) (2.037) (0.148) (0.197)

0, 7
0.701 0.299 0.051 6.737 0.495 0.528

(0.047) (0.047) (1.473) (1.956) (0.146) (0.193)

0.6, 0.4

0, 3
0.617 0.383 -0.141 4.174 0.505 0.416

(0.156) (0.156) (1.976) (2.711) (0.199) (0.268)

0, 4
0.598 0.402 -0.047 4.086 0.500 0.499

(0.090) (0.090) (1.723) (2.156) (0.170) (0.211)

0, 5
0.600 0.400 0.079 4.750 0.491 0.528

(0.064) (0.064) (1.590) (1.896) (0.154) (0.185)

0, 6
0.600 0.400 0.106 5.846 0.490 0.517

(0.054) (0.054) (1.566) (1.844) (0.154) (0.179)

0, 7
0.599 0.401 0.045 6.861 0.496 0.514

(0.050) (0.050) (1.524) (1.837) (0.150) (0.180)

0.5, 0.5

0, 3
0.521 0.479 -0.031 4.037 0.491 0.425

(0.167) (0.167) (1.992) (2.567) (0.213) (0.247)

0, 4
0.509 0.491 0.146 4.110 0.482 0.497

(0.093) (0.093) (1.765) (2.048) (0.177) (0.200)

0, 5
0.503 0.497 0.232 5.033 0.476 0.501

(0.064) (0.064) (1.673) (1.789) (0.164) (0.175)

0, 6
0.500 0.500 0.160 5.909 0.483 0.511

(0.056) (0.056) (1.641) (1.724) (0.161) (0.168)

0, 7
0.499 0.501 0.170 6.913 0.483 0.510

(0.051) (0.051) (1.630) (1.635) (0.159) (0.160)
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Table 3.1. Continued.

(π1, π2) (k1, k2) π̂1 π̂2 k̂1 k̂2 θ̂1 θ̂2

0.7, 0.3

0, 3
0.697 0.303 -0.391 3.524 0.439 0.553

(0.059) (0.059) (1.635) (2.213) (0.162) (0.220)

0, 4
0.698 0.302 -0.392 4.314 0.438 0.570

(0.053) (0.053) (1.594) (2.083) (0.159) (0.206)

0, 5
0.697 0.303 -0.358 5.377 0.436 0.563

(0.049) (0.049) (1.541) (1.951) (0.154) (0.193)

0, 6
0.702 0.298 -0.374 6.511 0.439 0.548

(0.046) (0.046) (1.491) (2.035) (0.149) (0.202)

0, 7
0.702 0.298 -0.525 7.706 0.453 0.529

(0.043) (0.043) (1.577) (2.043) (0.158) (0.203)

0.6, 0.4

0, 3
0.603 0.397 -0.332 3.637 0.434 0.540

(0.063) (0.063) (1.637) (2.145) (0.163) (0.210)

0, 4
0.600 0.400 -0.338 4.339 0.433 0.566

(0.056) (0.056) (1.625) (1.875) (0.161) (0.185)

0, 5
0.598 0.402 -0.404 5.515 0.441 0.550

(0.052) (0.052) (1.585) (1.887) (0.157) (0.187)

0, 6
0.601 0.399 -0.497 6.394 0.450 0.559

(0.051) (0.051) (1.681) (1.839) (0.167) (0.182)

0, 7
0.601 0.399 -0.454 7.564 0.446 0.543

(0.053) (0.053) (1.610) (1.880) (0.161) (0.186)

0.5, 0.5

0, 3
0.503 0.497 -0.416 3.509 0.440 0.552

(0.065) (0.065) (1.799) (1.927) (0.176) (0.189)

0, 4
0.501 0.499 -0.371 4.513 0.437 0.551

(0.056) (0.056) (1.715) (1.796) (0.170) (0.176)

0, 5
0.500 0.500 -0.453 5.427 0.444 0.558

(0.054) (0.054) (1.732) (1.728) (0.171) (0.171)

0, 6
0.500 0.500 -0.514 6.428 0.452 0.558

(0.053) (0.053) (1.774) (1.684) (0.175) (0.168)

0, 7
0.500 0.500 -0.459 7.593 0.447 0.541

(0.050) (0.050) (1.702) (1.706) (0.168) (0.170)

4. Discussion

Liu et al . (2006) introduce a method for estimating parameters of a mixture of binomial
distributions by using the EM algorithm. However, in the estimation of a mixture of shifted
binomial distributions, the method cannot be applied directly. This paper proposes a method
for employing the EM algorithm to estimate a mixture of shifted binomial distributions.
The mixture ratio and the component probability of success are first determined for each
component binomial distribution for each possible value of the shift parameter, and then the
value of shift parameters providing the highest log-likelihood value is selected. The simulation
results show that the proposed method provides reasonable performance in terms of sample
means and standard errors. The satisfactory results for estimated values for the success
probability of component binomial distributions indicate a need to extend the proposed
method for even better performance. In addition, future research should investigate large-
sample properties. The proposed method can be considered a generalization of Liu et al .
(2006) in that a mixture of binomial distribution is studied.
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