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ESTIMATING THE SIMULTANEOUS CONFIDENCE
LEVELS FOR THE DIFFERENCE OF PROPORTIONS
FROM MULTIVARIATE BINOMIAL DISTRIBUTIONS

Hyeong CHUL JEONG!, MyouNGsHiC JuUN? AND JAE Won Leg?

ABSTRACT

For the two groups data from multivariate binomial distribution, we con-
sider a bootstrap approach to inferring the simultaneous confidence level and
its standard error of a collection of the dependent confidence intervals for
the difference of proportions with an experimentwise error rate at the a level
are presented. The bootstrap method is used to estimate the simultaneous
confidence probability for the difference of proportions.

AMS 2000 subject classifications. Primary 62G05; Secondary 62H12.
Keywords. Bootstrap, multivariate binomial distribution, simultaneous confidence levels.

1. INTRODUCTION

Data having multivariate Bernoulli structure are encountered in many areas
such as genetic disease studies, analyses of system reliability, carcinogenesis bioas-
say studies and others. In the studies of the presence or absence of some cancer
tissues with multiple groups of female mice, for example, the number of occur-
rences of a particular lesion at a particular tissue may be modeled as binomial,
and the vector of such frequencies may be considered multivariate binomial with
unknown dependence structure.

The statistical inferences of the multivariate binomial distribution are de-
scribed by Hochberg (1988), Holland and Copenhaver (1987) and SAS multiple
test procedure (MULTTEST). One of the more useful methods for statistically
inferencing the multivariate Bernoulli data was proposed by Westfall (1985) and
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Westfall and Young (1989, 1993). To estimate the simultaneous confidence level,
Westfall and Young (1989, 1993) proposed that experimentwise significance level
be controlled by adjusting all p-values using vector based resampling methods
including bootstrap and permutation methods.

In this paper, when the two-group observable data may be modeled as hav-
ing come from multivariate binomial distributions, we consider two problems.
First, a bootstrap method for assessing the simultaneous confidence level of a
collection of confidence intervals for the difference of proportions are considered.
This analysis is an extension of the Westfall (1985)’s bootstrap simultaneous
confidence levels with one group multivariate Bernoulli data to the two groups
proportions. In addition, standard errors of estimates of simultaneous coverage
level are estimated by double bootstrap method. Second, which marginal con-
fidence intervals have been employed to estimate the simultaneous confidence
level are considered. The estimates of simultaneous coverage level are affected
by the construction methods of marginal confidence interval for the difference
of the binomial parameters from two groups. Many of the existing methods for
constructing the marginal confidence interval for the difference of proportions,
including the exact, asymptotically-based and bootstrap confidence interval are
evaluated by estimating true simultaneous probability via Monte Carlo method.

The rest of this paper is organized as follows. Section 2 introduces the boot-
strap simultaneous levels for the difference of proportions between two groups.
Section 3 presents the simulation results of the estimating values to the simulta-
neous confidence levels given the various marginal confidence intervals with for
the difference of proportions. We compared the bootstrap confidence interval
with classical methods. Section 4 concludes the paper.

2. SIMULTANEOUS CONFIDENCE LEVELS

2.1. Estimating the simultaneous confidence levels

Assume that the observable data vectors Y’ = (Y7,...,Y%) with binomial
marginal distributions Y; ~ B(n,p;) may be modeled as having come from mul-
tivariate binomial distributions. Define the notation

Y ~ MV By(P,n, D),

where P = (p1,...,pk) denotes population proportions vector for a k-component
and dependence structure specified by D.
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When n = 1, the distribution MV By(P,1, D) is multivariate Bernoulli dis-
tribution. If there are two treatment groups with n,ng experimental units
respectively, the available data vectors are Xi1,..., Xiny, Xo1,..- , Xon,, Where
X = (Xij1, Xijo, - - , Xijk), (4 = 1,2) has an independent and identical distri-
bution (i.i.d.) as MV B(P;, 1, D;) and X;;; is the response falling in [th variable
of the j** observation for the ith group. Let the it* group proportion vector
P, = (pi1,pi2,---,pik) then E(X;;) = F;. Let the ith group frequency vector
Y, = (Ya, Yz, .. ., YY) then Y; = Z;L’ Xij is distributed as MVBk(Pi,ni,Di).
The maximum likelihood estimators of the probability p;; is pi; = Yij/n;. When
n is large, 100(1—a)% large-sample marginal confidence intervals for p1;—p2;, j =
1,...,k, can be obtained as

In(Y1j — Yo5) = (P1; — D2j)
+Z(2) [n7 ' Pr5(1 — Brj) + ng o (1 — boy)2V5,  (2.1)

where Z(q4/7) is the 100(1 — a/ 2)th percentile of the standard normal distribution.

Suppose that we are interested in simultaneous confidence level of a collection
of confidence intervals for each of the parameter pi; —p2;, 7 = 1,..., k. The exact
simultaneous probability is determined by the underlying multivariate binomial
distribution. In this case the goal is to estimate

Ta = Pr[plj —P2j € Ia(Ylj - YQJ) for all j=1,... ,k]. (2.2)

This may be accomplished in analogous fashion to the one-sample case of Westfall
(1985).

Let X}, Xy, ..., X1, and X3, X3, ..., X3, be the i.i.d. bootstrap samples
that put mass 1/n; on each of the observed vectors X11, Xi2,. .., Xin, and X,
Xo9,...,Xon, respectively. Thus the Y = E;” Xi*j are distributed as i.i.d.
MV By, (P, ni, D;), where P, = Y;/n; and D; is the empirical probability mea-
sure of the observed k tuples in each group. In bootstrap samples, the complex
dependence structure or other physical constraints are preserved. Therefore, the
estimate of 7, is then computed as

7TZ = Pr[ﬁlj —ﬁgj c Ia(Yl);' - Yé;) for a,llg =1,.. ,k]

The issue of consistency for 7% was addressed by Westfall (1985) and the use of
bootstrap method in this instance is justifiable by Bickel and Freedman (1981)
and Singh (1981).
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2.2. The bias and standard error

In this section, the standard error and bias of the estimates of simultaneous
confidence probability are considered. The simulation standard error is used
to bound the true resample-based simultaneous confidence probability. In the
course of nature, double bootstrap method is used for estimating standard error.
Westfall (1985) discussed bootstrap-bootstrap method, but he did not attempt
it because this approach was extremely expensive in terms of computer time.
But the high-speed computer now makes it possible to estimate standard error
of simultaneous confidence probability.

The standard error of 7%, can be computed using the following algorithm.

Step 1. After selecting the bootstrap samples, generate two group double boot-
strap sample X{f,X{5,..., X1y , and X33, X33,..., X5, from bootstrap
samples respectively, and compute the 100(1 — a)% confidence intervals

LY -Y5), 5=1,....k

Step 2. Compute the I(A*) from A* = [p]; — p3; € La(Y(] — Y3) for all j =
1,...,k], where the maximum likelihood estimate from bootstrap sample
3 is Y;5/ni and I(A*) is an indicator function.

Step 3. Step 1 and Step 2 are repeated M times to get a 73" = > I(A])/M.

Step 1-3 are then repeated B times for each bootstrap sample to get the
collection of 7%*(b), b =1,..., B. Hence, the standard error and bias are given
by

B 1/2
Seqn = {Zw;*(b) —7)?/(B - 1)} , bias = 75 — 7,

b=1
where 7%* = S8 n2*(b)/B.

2.8. Other methods

Instead of using the bootstrap simultaneous confidence level from (2.2), we
can use the Bonferroni simultaneous confidence level. Let n(j) = Prpy; —
P2 € La(Y75— Y2*J)], and 7 (j) is the proportion of times the marginal bootstrap
interval for p;;—po; is correct. The estimate of bootstrap Bonferroni simultaneous
confidence level is BY = Y w%(j) — k+1, and the standard error of the bootstrap
Bonferroni simultaneous confidence level is {ZEZI(B;*(b) — B*))2/(B — 1)}\/?
by double bootstrap samples. However, in many applications this procedure is
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TABLE 2.1 Brown and Fears (1981) data showing numbers of tumor-bearing animals

Site Oppm 4ppm 8ppm 16ppm 50ppm

Liver 14 18 17 11 12

Lung 12 10 8 11 9

Lymph nodes 8 12 8 15 10

Cardiovascular 1 3 6 2 1
Pituitary 0 1 2
Ovary 3 1 2 2

Number in group 49 50 48 43 50

unnecessarily conservative due to the fact that all marginal coverage levels are
conservative. The simultaneous confidence level assuming independence is I A7, =
H?=1 7% (j), and the standard error of the bootstrap independent assumption
lower bound is {2, (TA%*(b)— T A%))?/(B—1)}1/2 by double bootstrap samples
(Jhun et al., 2007). These procedures do not consider the dependence structure
and the discreteness of multivariate binomial distribution.

2.4. Ezample : an animal carcinogenicity study - Brown and Fears data

Brown and Fears (1981) reported data from a two-year bioassay involving
female mice treated with five different levels of a compound. The group sizes,
dose levels, and tumor incidence rate for six sites are given in Table 2.1. The
raw data set contains 240 multivariate Bernoulli (six-component) vectors and
follows five different multivariate binomial distribution with unknown dependent
structure. This example data was also examined by Westfall and Young (1989)
for multiple testing in multivariate binary application.

As noted by Brown and Fears (1981), when each dose is compared with the
control (0 ppm), only one of the twenty-four tests is significant at the 5% level
which is Lymph nodes between 0 ppm and 16 ppm. Therefore, we have examined
the simultaneous confidence probability of collecting the experimentwise 100(1 —
a)% confidence intervals for the difference between 0 ppm and 16 ppm. The
nominal coverages 1 — a = 0.8, 0.9, 0.95 and 0.99 are considered. The marginal
confidence intervals, bootstrap simultaneous confidence levels, standard errors
and biases are given in Table 2.2.

The 80% marginal intervals show the Lymph nodes and Pituitary sites exhibit
significant difference between two groups, however, these clearly may be spurious
if one accepts the simultaneous confidence probability of 23.7% indicated by the
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TABLE 2.2 Estimate the marginal confidence intervals and simultaneous confidence interval for
the difference of proportions between Oppm and 16ppm. There were 1000 bootstrap and double
bootstrap replications for the bootstrap simultaneous confidence probability and standard error
respectively. (* : This mark means that the site is significant at the a level in marginal differ-
ence.)

Marginal prob. Marginal confidence level (1 — o)

Site Oppm 16ppm difference 80% 90% 95% 99%

Liver .286 .256 .030 (—.089.149) (~.123.182) (—.152.212) (—.209.269)
Lung 245 256  —.011  (—.127.105) (—.160.138)  (—.188.167) (—.244.222)
Lymph .163  .349 —.186 (—.301 —.070)* (—.333 — .038)" (—.362 — .009)* (—.417.046)
Cardio. .020 .047 —.026 (—.075.023) (—.089.036) (—.100.048) (—.124.072)
Pituitary .000 .047 —.047 (—.088 —.005)* (—.099.006) (—.109.016) (—.129.036)
Ovary .061 .047 .015 (~.045.075) (—.063.092) (-.077.107) (—.106.136)

Simultaneous conf. level estimate 0.237 0.451 0.582 0.791

Standard error 0.050 0.082 0.109 0.148

Bias —0.005 —0.034 —0.038 —0.091

Bonferroni lower bound(S.E)  0.000(0.014)  0.261(0.138)  0.497(0.165) 0.781(0.182)
Independence assumption(S.E)  0.244(0.047)  0.453(0.080)  0.587(0.108) 0.795(0.148)
Independence lower bound (1 — a)* 0.262 0.531 0.735 0.941

bootstrap estimate. At the 95% marginal levels, only the Lymph nodes site
is different, with simultaneous confidence probability estimated at 58.2% and
standard error estimated at 0.109. And at the marginal 99% level, for which the
simultaneous probability approximately achieves the 80% level, none of the sites
appears different between two groups.

We have presented the simultaneous confidence levels and standard errors for
the marginal confidence levels 0.5 through 0.999 using Figure 2.1. The first graph
shows the simultaneous confidence levels, the second graph shows their biases and
the third graph shows their standard errors at given marginal confidence levels.
Figure 2.1 indicates that the independence lower bound (1 — a)® were the highest
of all methods. In contrast, the simultaneous level (B}) by the bootstrapped
Bonferroni methods were the lowest of all methods. The estimate of the second
highest level was yielded by the independent bootstrap method (I A7), while the
estimate by the bootstrap method () was slightly lower than the estimate pro-
vided by the independent bootstrap method. If the marginal confidence intervals
agree to the nominal level (1 — a) then the independent bound (1 — a)® become
the baseline meaning that it’s a lower bound of all methods. But, in this context,
Figure 2.1 shows opposite results because we use the Wald type interval (see the
formula (2.1)) constructing the marginal confidence intervals. The coverage prob-
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FIGURE 2.1 Plots of simultaneous confidence levels, biases and standard errors at given marginal
confidence levels.
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abilities for the Wald type interval tend to be severe underestimated the marginal
nominal probabilities. If the marginal confidence intervals are constructed agree-
ing with the marginal nominal coverage (1 — ), then a little more sites may be
exhibit significant difference between two groups at the (1 — a) level. Section 3
deals with the problem.

Note that “Bonferroni lower bound” differs greatly from the “independence
assumption” values at low « levels. Note also that the simultaneous confidence
levels are close to the “independent assumption” values, which means that the
correlation structure with 6 sites have nearly independent structure.

From bias plot of Figure 2.1, the estimated simultaneous confidence levels
based on the double bootstrap samples are larger than the those based on the
bootstrap samples, when marginal confidence level (1 — ) is below the vicinity of
0.7. When marginal confidence level becomes large, such phenomenon is reversed.
The biases of bootstrap method are close to the those of independent bootstrap
method and we can also see that the biases of bootstrap methods yield lower
than the those of independent bootstrap method when (1 — «) > 0.70. When
S @5 (j) < k — 1, the estimate of bootstrap Bonferroni simultaneous confidence
level becomes negative, therefore, we set the biases of Bonferroni method to zeros
under the marginal confidence level 0.8 .

The simulation standard errors are used to bound the simultaneous confidence
probabilities. From standard error plot of Figure 2.1, we can see that as marginal
confidence level increase, the standard errors become large. At the 90% marginal
level, the bootstrap simultaneous standard error is 0.082, then 95% confidence in-
terval for the simultaneous confidence level is 0.45141.96(0.082) = (0.290, 0.612).
The Bonferroni standard errors are greater than the others above the marginal
confidence level 0.85. The bootstrap simultaneous standard errors are similar to
the independence standard errors.

Granting the estimates by the Bonferroni technique turned out to be rather
conservative in various experiments, we could conclude the bootstrap method may
be suggested as another statistically robust way of estimating the simultaneous
confidence level.

3. COMPARISON OF THE METHODS OF CONSTRUCTING THE MARGINAL
CONFIDENCE INTERVALS

The simultaneous confidence probability will be affected by the methods of
constructing the marginal confidence intervals p1; — pgj, j = 1,...,k and the
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FIGURE 3.1 Actual coverage probabilities (as functions of the true p1j = p2;) for nominal (1 —a)
confidence interval using Ezact interval(EXACT), Wald interval(WALD) and bootstrapped Wald
interval(BOOTSTRAP). The four different sample sizes are given, with n, = na denoting Group
1 and Group 2 sample size. Although it is sometimes biased, the actual coverage probabilities of
the bootstrap interval better approzimates the nominal 95% level.

sample sizes taken from two groups. It is meaningful to study which methods for
obtaining marginal 100(1 — @)% confidence intervals for the difference of propor-
tions has been employed to estimate the joint level of confidence for the entire
collection of intervals. A number of marginal confidence intervals are compared
in this section.

Most introductory statistics textbooks present the confidence interval for the
difference of proportions based on the asymptotic normality of the sample pro-
portions and estimating the standard error. This 100(1—«)% confidence intervals
for p1j — p2j, 7 =1,...,k are given by (2.1). This is called the Wald confidence
interval for the difference of proportions. The exact confidence interval for the
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difference of proportions, in contrast to asymptotic confidence intervals, are de-
scribed by Santner and Snell (1980) and StatXact software. The main problem
with using the exact confidence interval is the difficulty in computing the cu-
mulative joint probability mass function of two independent binomial random
variables. This procedure is too conservative, therefore the actual coverage prob-
ability can be much larger than the nominal confidence level unless the sample
sizes are quite larger.

However, the actual coverage probabilities for the Wald interval tend to be
much too small (see Figure 3.1) and a number of compromise asymptotic con-
fidence intervals are described in Beal (1987) and Newcombe (1998). Those de-
scribed include some intervals by Mee (1984), Miettinen and Nurminen (1985),
Beal’s Jeffrey-Perk and Haldane interval, profile method and Newcombe’s meth-
ods. Another method of constructing confidence interval for the difference of
proportions is bootstrap. Bootstrap confidence interval is similar to the Wald
confidence interval except for using the bootstrap distribution. To study the
performance of the methods introduced, a Monte Carlo investigation was done.
There may be other methods, but this study is limited to the marginal confidence
intervals for the difference of proportions explained by Wald, Exact, Mee, Miet-
tinen and Nurminen(M-N), Jeffrey-Perk(J-P), Haldane, Profile method, New-
combe’s method 10 and bootstrap.

We limit our attention to the following proportions and correlation matrix
based on specific case. Two groups follow the same multivariate Bernoulli dis-
tribution with P = {0.3,0.5,0.75,0.5,0.3} and equal correlation value 0.3. We
consider sample sizes nj(n2) = 10,30, 50 and 100, and nominal coverages 1 —a =
0.80,0.90,0.95 and 0.99. For each sample size, a random sample is generated and
summary measures of performance are calculated. For the measure of perfor-
mance, the true simultaneous confidence probability 7, will be calculated. But
it is a intractable since the intervals I, are not easily expressed and have a com-
plicated dependence structure. Therefore it will be estimated by simulation and
the estimate value 7, will be used the true simultaneous confidence probability.
In order to estimate 7o, n1(n2) = 100,000 pseudo random samples are generated
from the given multivariate bernoulli distribution and 7, is estimated by Monte
Carlo simulation repeated 100,000 times. The algorithm of Park et al. (1996)
was used to generate the pseudo random samples of the multivariate Bernoulli
distribution with pre-defined proportions and dependence structure. The esti-
mate values of 7, are 0.3598, 0.6223, 0.7950 and 0.9566 for 1 — o = 0.8, 0.9, 0.95
and 0.99 respectively. To compare the marginal confidence intervals, we compute
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the following measures.

Step 1. Generate random sample X11,..., Xin;, X21,. - -, Xon, from that multi-
variate Bernoulli distribution and calculate the marginal confidence inter-
vals of p1; —p2j, j = 1,...k, using the described nine methods for marginal
confidence intervals.

Step 2. Use the bootstrap procedure to obtain the simultaneous confidence prob-
abilities denoted by #% (based on B = 1000) with the same nominal 1 — «
coverage.

Step 3. Step 1-2 are repeated M = 100 times to get a collection of summary

measures,
M M
7 =Y #a(m)/M, RMSE = | > (#4(m) — #a)?/(M ~ 1),
m=1 m=1

where 7% (m) denotes the bootstrap estimated simultaneous confidence prob-
ability of mt" generated data set.

The results of this simulation are shown in Table 3.1. When ni(ns) < 50,
the mean of simultaneous confidence probabilities of the collections of Wald con-
fidence intervals have the lower estimated simultaneous confidence probabilities.
And the simultaneous confidence probabilities of the collections of exact con-
fidence intervals have the greater estimated simultaneous confidence probabili-
ties. Increasing sample size does not help the overestimation problem. When
ny(n2) < 30, the means for the Mee, Miettinen and Nurminen, Jeffrey-Perk, Hal-
dane, Profile, Newcombe and Bootstrap methods are not significantly different.
Note that the estimate root mean squared error (RMSE) of Mee and bootstrap
are generally small. When n;(ng) > 30, the means of simultaneous confidence
probabilities of the collection of bootstrap confidence intervals are close to the
estimated simultaneous confidence probabilities. The RMSE of bootstrap meth-
ods is smaller than that of the other methods and the bootstrap method has a
slight edge over the other methods. As a result of these findings, if one wants to
compute a simultaneous confidence probability, except Wald and exact methods,
there are no significant difference among the methods used. But if one wants to
compute a more exact simultaneous confidence probability, bootstrap intervals
for the difference of two proportions are good choices.
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TABLE 3.1 The means and root mean squared errors of simultaneous confidence levels

1-a=038 1-a=0.9 1-a=095 1-a=0.99

n1 =ns method Mean RMSE Mean RMSE Mean RMSE Mean RMSE
10 WALD 30903 .06183 .52721 .10598 .67139 .13326 .84997 .12026
EXACT 74115 .38278 .89540 .27488 .91665 .12271 .99135 .03496
MEE .33299 .05302 .66056 .05385 .85226 .06226 .96964 .01502
M-N .34243 .05033 .66099 .05345 .85712 .06545 .97439 .01938
J-P 38122 .04864 .69278 .07841 .81712 .04252 .96342 .01562
HALDANE .36892 .04461 .63788 .05965 .78040 .06477 .91501 .08063
PROFILE 32903 .05508 .62281 .05287 .77628 .05257 .94833 .03072
NEWCOMBE | .38006 .04819 .67848 .06910 .83500 .04913 .96314 .01733
BOOTSTRAP | .41385 .07561 .63623 .06125 .77703 .06778 .91970 .07479
30 WALD .32912 .03689 .60007 .03008 .76291 .03525 .93297 .02506
EXACT 58161 .22351 .74236 .12254 91179 .11760 .98645 .03010
MEE 34704 02743 64992 .03845 .80511 .01794 .95689 .00696
M-N 35498 .02531 .65541 .04213 .81329 .02371 .96143 .00839
J-P .35218 .02488 .65927 .04446 .81118 .02218 .95882 .00709
HALDANE 34537 .02706 .64698 .03645 .80828 .02064 .95544 .00730
PROFILE 34252 .02827 .63973 .03153 .79720 .01545 .95131 .00916
NEWCOMBE | .34723 .02665 .65217 .03913 .81094 .02183 .95882 .00677
BOOTSTRAP|.37983 .03044 .63035 .02192 .79286 .01479 .95731 .00866
50 WALD .36323 .02218 .60597 .02660 .77031 .02907 .94162 .01702
EXACT 44045 .08456 .71231 .09311 .87883 .08500 .97695 .02094
MEE 35431 .02607 .61195 .02296 .76783 .03237 .94485 .01433
M-N .35889 .02602 .61834 .02011 .77059 .02973 .94562 .01364
J-P 35725 .02583 .61644 .02123 .77025 .02994 .94568 .01372
HALDANE 35624 .02576 .61478 .02198 .76611 .03389 .94455 .01472
PROFILE 35343 .02619 .60861 .02453 .76329 .03636 .94209 .01679
NEWCOMBE | .35607 .02616 .61393 .02202 .76811 .03216 .94541 .01392
BOOTSTRAP | 35787 .02104 .62460 .02002 .78837 .01666 .95647 .00756
100 WALD 35958 .01809 .61491 .01806 .77846 .02144 .94557 .01296
EXACT 47229 11401 .74826 .12700 .86882 .07487 .97149 .01559
MEE 36133 .02051 .61052 .02147 .77654 .02322 .95109 .00858
M-N 36825 .02159 .61211 .02068 .77808 .02193 .95208 .00786
J-P .36285 .02020 .61271 .02057 .77773 .02215 .95172 .00801
HALDANE .35992 02104 .61083 .02138 .77634 .02359 .95095 .00858
PROFILE .34407 .02863 .60917 .02192 .77532 .02432 .94914 .00997
NEWCOMBE | .36115 .01916 .61175 .02101 .77730 .02257 .95041 .00887
BOOTSTRAP | .35978 .01806 .62220 .01637 .78834 .01612 .95417 .00710

Ta .3598 .6223 .7950 .9566
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4. CONCLUSION

For the two groups data from multivariate Bernoulli distribution, the tech-
niques for evaluating the simultaneous confidence level of the collections of the
marginal confidence intervals for the difference of proportions and the compar-
isons for estimating the simultaneous confidence level given the specific marginal
confidence intervals have been presented. The bootstrap methods have been em-
ployed to estimate the joint level of confidence for the entire collection of the
marginal confidence intervals of py; — p2j, j =1,..., k. Especially, the marginal
bootstrap confidence intervals are more accurate, at least in terms of estimating
the true simultaneous confidence probability. In consideration of this preceding
results, bootstrap methods are more reasonable and efficient way than the com-
peting methods since they consider the dependence structure of the multivariate
Bernoulli distribution.
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