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Abstract

This paper proposes new parameterizations of the tilted beta binomial distribution, obtained from the com-
bination of the binomial distribution and the tilted beta distribution, where the beta component of the mixture
is parameterized as a function of their mean and variance. These new parameterized distributions include as
particular cases the beta rectangular binomial and the beta binomial distributions. After that, we propose new
linear regression models to deal with overdispersed binomial datasets. These new models are defined from the
proposed new parameterization of the tilted beta binomial distribution, and assume regression structures for the
mean and variance parameters. These new linear regression models are fitted by applying Bayesian methods and
using the OpenBUGS software. The proposed regression models are fitted to a school absenteeism dataset and to
the seeds germination rate according to the type seed and root.

Keywords: count data, overdispersion, tilted beta distribution, binomial distribution, tilted beta
binomial distribution, Bayesian approach

1. Introduction

The beta distribution is usually used to study continuous variables X that take values in an open inter-
val (a, b), given that the random variable Y = (X —a)/(b—a) takes values in the open interval (0, 1) and
can be assumed to have beta distribution, B(p, g). Beta distribution appears in many applications, such
as in the analysis of population growth, interest rates, disease incidence, and unemployment rates. In
different fields, there is often a need to model continuous random variables that are assumed to follow
the beta distribution as a function of a set of explanatory variables. For this type of analysis, Cepeda-
Cuervo (2001) proposed the beta regression models, where the mean, 4 = p/(p + g), and dispersion,
v = p + g, parameters follow regression structures. These beta regression models were appropriately
extended by Simas et al. (2010), assuming the regression structure to be nonlinear in the mean and in
the dispersion parameters, v = p + g, who has provided valuable insights in the development of new
research in recent years, especially using frequentist methods. Taking into account the conditional
interpretation of v, the mean and variance beta regression models are proposed by assuming that an
appropriate function of the mean and variance parameters of the beta distribution follows a linear
regression structure (Cepeda-Cuervo, 2015, 2023). These models improve the regression parameter
inferences and interpretations.

In order to admit heavier tails in the beta distribution, Hahn (2008) proposed the beta rectangular
distribution as a new distribution that, like the beta distribution, has the open interval (0, 1) as domain.
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The beta rectangular distribution consists of a convex combination between the beta distribution and
the uniform distribution U(0, 1). Subsequently, Hahn and Lépez Martin (2015) proposed the tilted
beta distribution, that consists of a mixture of the beta distribution and the tilted distribution, which
has as particular cases the beta rectangular distribution and the beta distribution. In this paper, from
the mean and variance beta distribution, a new parameterization of the tilted beta distribution is pro-
posed, where mean and variance beta distributions and beta rectangular distributions were applied to
improve the above proposal by including the interpretation advantages of the mean and variance beta
distributions.

In count datasets, it is often found that the variance of the response variable Y exceeds the the-
oretical variance of the binomial distribution. This phenomenon, known as extra-binomial variation,
can lead to underestimation errors, lower efficiency of estimates and underestimation of the variance,
which can in turn can generate incorrect inferences about the regression parameters or the credible in-
tervals (Collet, 1991; Cox, 1983; Williams, 1982). Combining the beta distribution with the binomial
distribution leads to the beta-binomial distribution. This distribution is normally used to model the
number of successes obtained in a finite number of experiments, and to study overdispersed datasets.

There are several approaches to studying overdispersed binomial datasets. Hinde and Demetrio
(1998) categorized the majority of overdispersed binomial models into two classes: (1) those in which
a more general shape for the variance function is assumed by adding additional parameters; and (2)
models in which it is assumed that the parameter p of the binomial distribution bin(m, p) is itself a
random variable. In the first class, the double exponential family of distributions allows researchers to
obtain double binomial models. This enables the inclusion of a second parameter, which regardless of
the mean,that controls for the variance of the response variable and can be modeled from a subset of
some explanatory variables (Efron, 1986). In the second class, the beta binomial distribution assumes
that the response variable follows a binomial distribution while the probability parameter follows a
beta distribution, B(a,b). When the beta distribution is parameterized in terms of its mean and the
dispersion parameter (Cepeda-Cuervo, 2001), the beta binomial distribution is presented in terms of
the mean and dispersion parameters as described by Cepeda-Cuervo and Cifuentes-Amado (2017).

To obtain a model with better flexibility from the beta binomial distribution, where the beta dis-
tribution assigns small probability tail values of p, Cepeda-Cuervo and Cifuentes-Amado (2017) pro-
posed the tilted beta binomial distribution by assuming that p in the binomial distribution bin(m, p)
follows a tilted beta distribution, which, in turn, assumes that p follows a tilted mean and dispersion
beta distribution. As a particular case of this distribution, these authors defined the beta rectangu-
lar binomial distribution by assuming that the parameter of the binomial distribution p has a beta
rectangular distribution. This distribution allows for defining more general overdispersion regression
models than that defined from the beta binomial regression model, which produces better estimates of
the regression parameters, credibility or confidence intervals, and statistical inferences in the analysis
of overdispersed binomial datasets. The tilted beta-binomial distribution was applied by Hahn (2022)
in the analysis of overdispersed data, which assumes maximum likelihood and Bayesian methods. He
applied this distribution to the analysis of the population dataset from the 2010 US Census. He found
that the tilted beta-binomial distribution provided a better fit than the beta-binomial distribution. As
he reported, the tilted beta-binomial distribution generalized the beta-binomial distribution, and it is
capable of modeling datasets with greater overdispersion than the beta-binomial distribution.

We take into account the restricted interpretation of the dispersion parameter v in which a constant
mean increases when the variance decreases and decreases when the variance increases. In this paper,
we propose to improve the binomial and the tilted binomial distributions, assuming that p in the
binomial distribution follows the mean and variance beta distribution proposed in Cepeda-Cuervo
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(2023). One advantage of this alternative versus the mean and dispersion regression models is that
the interpretation of the dispersion parameter is only possible for fixed values of the mean (v can be
interpreted as a precision parameter in the sense that for the fixed values of u, the variance decreases
when v increases), while in the proposed models, changes in the variance can be explained directly
through changes in the explanatory variables corresponding to the variance regression structure. Thus,
this paper proposes tilted beta binomial regression models where the mean and variance of the beta
distribution, the mean of tilted distributions, and the mixture parameter follow regression structures.

This paper is organized as follows. After the introduction, in Section 2, the mean tilted distribution
is presented. In Section 3, three parameterizations of the beta distribution are considered. In Section
4, the uo-tilted beta binomial distribution is introduced and the uo?-rectangular beta binomial dis-
tribution is presented as a particular case. In Section 5, the po-tilted beta binomial distributions are
defined. Section 6 presents a summary of the mean and variance beta regression models proposed by
Cepeda-Cuervo (2023). In Section 7, the tilted beta binomial regression models are defined. Finally,
Section 8, reports the results of two applications. Section 8.1 contains the results of analyzing a school
absenteeism dataset by applying po>-beta binomial regression models, and Section 8.2 descrribes the
influence of the type of seed and root on the proportion of germinated seeds in each of 21 dishes by
fitting a tilted beta binomial linear regression using the OpenBUGS software. The proposed model’s
performance is compared with the binomial and beta binomial regression models.

2. Tilted distribution

The tilted distribution was proposed by Hahn and Lépez Martin (2015), and the following alterna-
tive definition was proposed by Cepeda-Cuervo and Cifuentes-Amado (2017): a random variable Y
follows a tilted distribution with parameter v if its density function is given by:

C(le)Z[2U—2(2U—1)y]1(0’])(y), O0<v<l. (21)

The mean of Y, denoted by y, := E(Y|v), is iy = (2 — v)/3. Thus, by parameterizing the density
function (2.1) in terms of g, this density function is given by:

Ol =[3Cu—1Qy—1)+1] Lo » (2.2)

where 1/3 <y, < 2/3 . The variance of a random variable Y that follows the density function (2.2) is
given by V,(Y) = u,(1 — u;) — 1/6. According to (2.2), it is clear that this distribution is equal to the
uniform distribution when u, = 0.5, is leaning to the right when g, is smaller than 0.5, and leaning to
the left when g, is bigger than 0.5.

3. nuo’-beta distribution

In this section, three parameterizations of the beta distributions are presented. A random variable Y
follows a beta distribution if its density function is given by:

I'p+q) , -1
m)’p A=y on®) , 3.1

where p > 0, ¢ > 0 and I'(-) denotes the gamma function. The mean and variance of Y, u, = E(Y)
and o-i = Var(Y), are respectively given by u, = p/(p + q) and

Pq
P+9P(p+qg+1)

BOIp.qg =

ol = (3.2)
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From the beta density function (3.1), the mean (u;) and dispersion (v) beta distribution (3.3) is
defined, where v = p + ¢g. A random variable Y follows a u;v-beta distribution if its density function
is given by:

~ I(v)
T L)L = )

This parameterizations of the beta distribution, presented in Ferrari and Cribari-Neto (2004), was
already proposed in the literature, for example by Jorgensen (1997) and Cepeda-Cuervo (2001), p. 63.
In this parameterization of the beta distribution, the variance of Y is given by 0> = u(1 — u)/(1 + v).
Thus, v = p + g has an interpretation that for a fixed mean, the variance of Y increases when v
decreases and the variance of Y decreases when v increases.

Finally, assuming the mean and variance parameterizations of the beta distribution, proposed in
Cepeda-Cuervo (2015) and Cepeda-Cuervo (2023), the beta density function is given by (3.4), where
¢ =1/0% and K = D(up(1 = pp)¢ = D/ Ty (1 = pp)p = u)U(p(1 = p1)*¢ = (1 = u))). This formu-
lation of the beta density function is proposed in Cepeda-Cuervo (2023).

201_ PP _ 20 (1_ _
fB (y|#b, o-i) — Kyllb(l b)) —Hp 1(1 _y)ﬂh(l b))~ ¢—(1—pp) 11(0’1)())). (34)

The advantage of the density function (3.4) arises from the limited interpretation of the dispersion
parameter v = p + ¢ in (3.3), while in equation (3.4), the precision parameter is given by ¢ = 1/0?,
where 0% = Var(Y).

yp;,v—l(l _ y)V(l_Hb)_ll(O,l)(y)' (33)

SO up,v)

4, Tilted beta distributions

This section presents a new parameterization of the tilted beta distribution proposed by Hahn and
Lépez Martin (2015), in terms of the mean () and the variance (0-?) parameters of the beta distribu-
tion and the mean of the tilted distribution . This new parameterization of the tilted beta distribution
is obtained from the convex combination of the y,-tilted distribution proposed by Cepeda-Cuervo and
Cifuentes-Amado (2017) and the j;,0--beta distribution proposed by Cepeda-Cuervo (2023).

1. Tilted pv-beta distribution.

The tilted beta distribution was introduced by Hahn and Lépez Martin (2015), as a convex com-
bination of the tilted and the beta distributions. In the (u,, up, v, 8) parameterized form, this dis-
tribution was proposed in Cepeda-Cuervo and Cifuentes-Amado (2020) from a combination of
the mean tilted distribution (2.2) and the mean and dispersion beta distribution (3.3). Thus, the
(s, 1p, v, 0) density function of this distribution is given by:

F Ol s pap, v, 0) = 6c (vl ) + (1 = 0)fp (v . v) » 4.1

where 0 <y < 1 and 0 < 8 < 1. The notation Y ~ TB(u;, up, v, 0) is used to denote that Y follows
this tilted beta parameterized distribution, with the mean and variance given by:

EY | pes i, v, 0) = Oy + (1 — Oy 4.2)
V(Y| s 5,5 60) = E (Y| s, v,60) = E* (¥ | i, i, v, 6)

= [0E, (Y?) + (1 = O)E, (¥*)] - [ + (1 = O)pp ]

= OV, (Y) + (1 = )V, (Y) + 61 — O)(u; + up)°, (4.3)
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where E;(Y?) and V,(Y) denote the expectation of Y? and the variance of Y, by assuming that ¥
follows the tilted distribution, and E,(Y?) and V,,(Y) denote the expectation of Y2 and the variance
of Y, by assuming that Y follows the beta distribution (3.3).

The rectangular beta distribution is a particular case of (4.1) when y, = 0.5 (the slope of the tilted
distribution is zero). Thus, the rectangular beta density function is given by:

JOIlpv,0)=0+1-0)fp (v, 4.4)

where 0 <y < 1.

The tilted beta distributions are appropriate to analyze datasets with larger variance than beta
distributions with larger values of their density at the ends of the (0, 1) interval. For example,
when g, = 0.5, the beta rectangular distribution (4.4) is obtained. For other values of y;, the tilted
component of the mixture allocates more density on one side of the open (0, 1) interval and less to
the other side. The tilted beta distribution has been studied and applied in the project management
context by Garcia Perez et al. (2016) and Udoumoh et al. (2017), among others.

2. Tilted mean and variance beta distribution. The mean and variance tilted beta distribution is
introduced as the convex combination of the tilted distribution (2.2) and ,ub0'2—beta distribution
(3.4). The density function of a random variable Y that follows this distribution is given by:

£ (91 e, 55,60) = 0 (] ) + (L= Oy (v] 10, 7). 4.5)

where 0 <y < 1and 0 < 6 < 1. The notation Y ~ TB(u;, up, o2, 6) is used to denote that Y follows
this distribution. The mean and the variance of Y are E(Y) = 6u, + (1 — )y, and

V(Y) = 607+ -0 +6(1 -0 + ) (4.6)

where 0> = V,(Y) is the variance of the tilted distribution and a’i = V,(Y) is the variance of the
beta distribution.

3. Tilted mean and precision beta distribution. Given that precision is the inverse of variance, the
tilted mean and precision beta distributions can be defined from (4.5) and written 0',27 as 1/¢p. The
mean and (variance) precision beta rectangular distribution can be defined as a particular case.

The tilted mean and variance (or precision) beta distributions are appropriate to analyze datasets
with larger variance than the uv-beta distributions, but the these have the advantage of clearer and
simpler parameter interpretations.

5. Tilted beta binomial distributions

At the beginning of this section, in Subsection 5.1, the mean and the “dispersion” (v = a+b) tilted beta
binomial distribution is presented, following its definition proposed by Cepeda-Cuervo and Cifuentes-
Amado (2017). After that, the mean and variance parametrization of this distribution is proposed in
Subsection 5.2. Finally, in Subsection 5.3, following Cepeda-Cuervo (2023), we present the mean and
variance beta binomial density function.
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5.1. Tilted uv-beta binomial distributions

Let Y|p ~ bin(m, p) be a random variable that follows the binomial distribution, where p follows the
tilted beta distribution, p ~ TB(u;, up, v, 6). Then Y follows a tilted beta binomial distribution with
parameters /i, [p, v and 6, which are denoted by Y ~ TBB(uy, i, v, 0), if their probability function is
given by:

1
fOl e o, 6,60) = fo Tain 1 m, p)[0c (p| ) + (1 = 6) fpera (P | 1, V)] dp
B 29(m) [y(6,u, —3)+m2—3u) + 1

By+1l,m—-y+1)+

y m+2
(1 = 0)fBB» ) » (5.1
where y = 0,1,...,m; B(-,-) denotes the beta function, and fpp,.,(-) denotes the density function

of the beta binomial distribution, which is parameterized in terms of the mean and the dispersion
parameters (Cepeda-Cuervo and Cifuentes-Amado, 2020).

The mean and variance of a random variable Y that follows the (u;, up, v, 6)-tilted beta binomial
probability function are given by: E(Y) = E(E(Y|p)) = mE(p) = m[6u, + (1 — O)up] and

V(Y) = VE(Y| p)) + E(V(Y| p))
= m’V(p) + mE(p) — mE(p*))
= m{(m - DV(p) + E(p)(1 - E(p))}
= m{m = 1[0V, + (1 = OV, + 61 = ), + up)?| + [6te + (1 = Opp] [1 = O, + (1 = g ]},

where ;, and Vj, denote the mean and variance of the beta distribution, respectively, and y, and V;
denote the mean and variance of the tilted beta distribution. The behavior of the (u;, up, v, 6)-tilted
beta binomial probability function is illustrated in Cepeda-Cuervo and Cifuentes-Amado (2020), for
different vectors of parameter values.

A particular case of this distribution is the Tilted (u,v,6)-beta rectangular binomial distribution.

Y follows this distribution if Y|p follows a binomial distribution, Y|p ~ bin(m, p), where p follows the
beta rectangular distribution (4.4). This density function of Y can be obtained as a particular case of
the tilted beta binomial distribution (5.1) by replacing p, with 0.5:

F Ol e, ¢,6) = (’;1)93@ +1Lm—y+ 1)+ =60)fsauv 0| 1, v), (5.2)

where y = 0,1,...,m. From the equations of the mean (4.2) and variance (4.3) of the tilted beta
binomial distribution with a setting y, = 0.5, the mean and variance of the rectangular beta distribution
are given by:

E(Y)=m [g +(1— G)u]

pu(l =)
1+v

V<Y>=(m2—m)[ (1—9)<1+9(1+¢>>+%<4—39)]

6 2-6
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5.2. Tilted po?-beta binomial distributions

Let Y|p ~ bin(m, p) be a random variable that follows a binomial distribution, where p follows the
tilted beta distribution, p ~ TB(u;, up, 02,6). Then Y follows the tilted beta binomial distribution with
parameters 1, {1, o> and 6, which are denoted by ¥ ~ TBB(u;, tp, 0>, 6). The probability of this
distribution is given by:

f(ylut,ub,qﬁ,@):29(m)[y(6”’_3)+m(2_3”’)+1 B+ lm—y+1)+
y m+2

(I = 0) /B, ) » (5.3)

which for y, = 0.5 is the beta rectangular binomial distribution.

A particular case of the distribution (5.3) is the (up, o2, 0)- tilted beta rectangular binomial distri-
bution. In this case, Y follows the (/Jb,O'Z,H)-beta rectangular binomial distribution if Y|p ~ bin(m, p)
is a random variable that follows a binomial distribution, and where p follows the beta rectangular
distribution. The density function of this distribution can be obtained as a particular case of the tilted
beta binomial distribution (5.3), by replacing y, with 1/2:

m
£l 0?.6) = (y)eB@ +Lm=y+ 1)+ (1= 0)fapp,000) (5.4)
wherey =0,1,...,m.

5.3. uo?-beta binomial distribution

The po?-beta binomial distribution, defined in Cepeda-Cuervo (2023), is obtained by assuming that a
random variable Y follows a binomial distribution B(m, p), where p follows the uo2-beta distribution
(3.4). The po-beta binomial probability function is given by:

f(yl,ub,cr2,9) _ (")B(Y+,u(ﬂ(1 —w¢—Dym—y+ (u(d —we— DA - (5.5)

Bu(u(l = )¢ = 1), (u(1 = )¢ = DH(A = ) ’

where 0 < 1 < 1, ¢ = 1/0? and 0 < 0 < 1/4. ¢ is the precision parameter of the beta distribution.

6. Mean and variance beta regression models

The beta regression model was proposed in Cepeda-Cuervo (2001), under a Bayesian framework by
assuming that the mean (u) and the dispersion (v = a+b) parameters follow linear regression structures
given by:

h(w;) = X}, (6.1)
gv) = zly, 6.2)
where £ is the logit function; g is the logarithmic function; and 8 = (By,B1,...,58:) and y =
(Y0, Y15+ - y,,)’ are the vectors of the mean and dispersion regression parameters, respectively; X; =
(xi1, ..., xa)" is the vector of the mean explanatory variables; and z; = (zi,...,z)" is the vector

of the dispersion explanatory variables at the i observation. A frequentist approach to the beta re-

gression models was presented by Ferrari and Cribari-Neto (2004), assuming that % is an appropriate
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real valued function, strictly monotonic and twice differentiable, defined on the interval (0, 1), and v
is a constant dispersion parameter. These authors presented a wide range of applications where the
practitioner needs to assume regression structures to explain the behavior of the variables of inter-
est. Although many variations of mean and dispersion beta regression models have been developed
in recent years, these proposals have at least two drawbacks. The first is the interpretability of the
dispersion parameter v, given that v is considered to be a precision parameter for a constant mean, the
variance decreases when v increases. A second problem is the lack of an explicit regression structure
for the variance, which impairs the quality of the posterior regression parameter inferences.

A first approach to the mean and variance beta regression models was proposed in Cepeda-Cuervo
(2015) and a general definition was formulated in Cepeda-Cuervo (2023). In Cepeda-Cuervo (2023),
the mean regression structure is given by (6.3) and the variance (or precision) regression structure is
given by (6.4), where h(-) and g(-) are real functions defined in the open interval (0, 1), like the logit,
probit, log-log and complementary log-log functions.

h(u;) = XiB, 6.3)
g(40) =2'y. (6.4)

If, as in Cepeda-Cuervo (2023), for example, the mean and variance of the beta regression model
are given by logit(u) = x'8 and logit(40) = z'y, then the parameter estimates of the mean and
variance regression structures are easily interpretable.

1. If X, is an explanatory variable associated with parameter 5; where 8 > 0, increasing behavior of
X is associated with an increasing mean, and where 8; < 0, increasing behavior of X is associated
with a decreasing mean.

2. If Z, is an explanatory variable associated with parameter y; where y; > 0, increasing behavior of
Z, is associated with increasing variance, and where y; < 0, increasing behavior of Z; is associated
with decreasing variance.

The mean and precision (¢ = 1/0?) beta regression model can be defined by the mean regression
structure (6.3) and by g(¢ — 4) = z'y, where g(-) is the logarithmic function or some other appropriate
real function defined from the positive real number set to the real numbers, such as the logarithmic
function.

The results of the statistical analysis of the dyslexic dataset presented in Cepeda-Cuervo (2023),
and obtained by applying uo-beta regression models, reveal the good performance of this model and
the easy interpretation of the posterior parameter inferences compared with that obtained from fitting
the uv-beta regression model to this dataset. In the uo>-beta regression model, the variance of the
variable of interest is interpreted according to items 1 and 2 of this section, which is unconditional to
the mean values. Thus, the mean and variance beta regression models, defined in (6.3) and (6.4), have
a substantial interpretative advantage compared with the mean and “dispersion” models, defined by
(6.1) and (6.2).

Additionally, in the results of simulation processes, the mean and variance models outperform the
mean and dispersion models, which can be established by statistical methods. In these simulations,
the explanatory variables can be generated from uniform distributions, the mean and dispersion pa-
rameters are obtained from their respective mean and dispersion structures, and the observations of
the variable of interest are generated from the beta distributions. Finally, the beta regression models
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were fitted to the resulting dataset, and the model with the best fit was the mean and variance beta
regression model, which had the smallest residuals.

With the new parameterization of the beta distributions proposed by Cepeda-Cuervo (2023), the
tilted mean and variance beta regression model is defined from the mixture distribution (4.5), a con-
vex combination of the tilted distribution (2.2) and the p,02-beta density function (3.4), where an
appropriate function of their parameters follows linear the regression structures:

Let Y; ~ TB(i, tpis 0'12”., 6),i=1,2,...,n, be independent random variables with tilted mean and

variance beta distribution. Let X; = (xi1,..., X))’ Zi = (Zi1, ... Za)'s Wi = Wir,...,wy) and X; =
(%, - . ., Xis)" be the covariate vectors of wy;, o-il., 6; and u,; regression structures, and 8 = (B, . . . ,[3,,)’,
Y= 0L, 6 = (61,...,6) and @ = (a@y,...,as), be the respective regression parameter

vectors. Thus, the tilted mean and variance regression models are defined from the mean and variance
tilted beta distribution (5.3) by assuming the following regression structures.

logit(up) = X, (6.5)

log (40%,) = 2}y, (6.6)
logit(6;) = Wﬁ&, 6.7

logit (3, — 1) = Xlev. (6.8)

This parameterization of the tilted beta distribution has some interpretive advantages, that is re-
lated to other parameterization of this distribution. In this parameterization, if ¥ follows a tilted beta
distribution, then

exp(x3) )+( | _0)( exp(X'@) N 1)

1 + exp(x) 3 + 3exp(Xla@) 3

E(Y) = 9(
Thus, the contribution of an explanatory variable to the mean behavior of the variable of interest Y
can be easily established. A similar argument can be established to explain the contribution of the
explanatory variables to the behavior of the variance.
Many extensions of the mean and variance beta regression models can be proposed, which provide
valuable insights Simas ef al. (2010), by assuming nonlinear regression structures for the mean and
variance of the beta regression models.

7. Tilted beta binomial regression models

In Item 1 of this section, the tilted beta binomial regression models defined in Cepeda-Cuervo and
Cifuentes-Amado (2020), where up, v and 6; follow regression structures, are extended to include
a mean regression structure of the tilted mixture parameter components. Additionally, in Item 2,
considering the reduced interpretation of the “dispersion” parameter in the beta density function (3.3)
and in the tilted binomial distribution (5.1), we propose the j,u,0>6-tilted beta binomial regression
models, where g, and o? also follow regression structures. Finally, in item 3, as a particular case of
item 2, the y,0>-beta binomial regression models, proposed in Cepeda-Cuervo (2023), are presented.

1. Tilted y,u,v6-beta binomial regression models: Let Y; ~ TBB(w;, upi, vi, 0, i = 1,2,...,n,
be independent random variables with tilted beta binomial distribution. Let X; = (x;1,..., X)),
z; = (Zits- s 2i)s Wi = Wit,...,wy) and X; = (%;,..., X;;)" be the covariate vectors of the i,
vi, 0; and p,; regression structures, and 8 = (B1,....8,), ¥ = (1,.. -, Y)'s 6 = (61,...,6,)" and
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a = (ay,...,a), be the respective regression parameter vectors such that:
logit(up) = X3, (7.1
log(vi) = 2y, (7.2)
logit(6;) = w6, (7.3)
logit(3u,, — 1) = ifa. (7.4)

Thus, the likelihood function of the TBB(uy;, i, vi, 6;)-regression model is given by: L(i;, Upi, Vi, 0;)
= [17 fOlusi, upi» @1, 6:), where f(-|usi, pipi, @1, 6;) is given by (7.5).

i

m; ,'6,'—3 +m;i(2 —3u;) + 1
f(y,'|llmﬂbi,¢1,9;)=29i( )[y(,ut )m~+(2 i) X

Bi+1,mi—yi+ 1)+ —6) a0 (7.5)

2. ppo?6-tilted beta binomial regression models. These models are defined from the pu,0%6-
tilted beta binomial distribution (5.3) by assuming the following regression structures: (7.1) for y,
(7.3) for 6;, (7.4) for ,, and logit(4o?) = zly for o2

3. upo?-beta binomial regression models. These models are defining from the y,0%-beta bino-
mial distribution given in 5.3 by assuming the following regression structures: (7.1) for y;, and
logit(40?) = zly for o7, as proposed in Cepeda-Cuervo (2023).

Hahn (2022), in his applications and simulations, established that the performance of the tilted
beta-binomial distribution is better than the beta-binomial model, including a first application to big
data. The author found evidence for the existence of the beta-binomial and tilted binomial components
in applications of demographic datasets.

8. Applications

This section includes posterior parameter inferences that are obtained by applying the pu,0-6-tilted
beta binomial regression models to analyze the school absenteeism dataset in Section 8.1 and seed
germination dataset in Section 8.2. In both cases, in order to define the Bayesian tilted beta binomial
regression model, the following a priori distributions are assumed for the regression parameters: 8 ~
N(,B), y ~ N(0,G), 8 ~ N, D) and @ ~ N(0, D). If there are no explanatory variables for y;,
then (7.4), as given by logit(3u, — 1) = @ and ag ~ N(0, 10%), where k is a positive real number, can
be assumed to be the prior distribution. Also, given that u, ~ U(1/3,2/3), the uniform distribution
s ~ U(1/3,2/3) can be assumed as the prior distribution of ;.

8.1. School absenteeism dataset

The first dataset analyzed in this paper was originally presented in Quine (1975) and comes from a
sociological study of Australian Aboriginal and White children from Walgett, New South Wales with
nearly equal numbers between the two sexes and equal numbers from between the two cultural groups.
Children were classified by culture, age, sex, and learner status; and the number of days absent from
school in a particular school year was recorded. In this dataset, the response variable of interest is
the number of days that a child was absent during the school year (days absent: Y). The explanatory
variables are the following factors with two levels:
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Table 1: Parameter estimates of the u,u,026-tilted beta binomial model (Model 1) and the po-beta binomial
model (Model 2) in the analysis of the school absenteeism dataset

Model 1 Model 2
Param. Mean (S.D.) 95% Cred. Int. Mean (S.D.) 95% Cred. Int
Bo —1.985(0.149) (-2.25,-1.683) —-1.976(0.142) (-2.250,-1.693)
B3 —-0.531(0.111) (—0.736,-0.335) —0.533(0.107) (—0.743,-0.323)
B4 —0.490(0.198) (-0.821,-0.117) —-0.501(0.192) (—0.869,-0.121)
Y0 —3.363(0.261) (—3.836,-2.76) —3.344(0.264) (—3.833,-2.811)
2 —0.984(0.402) (—1.654,-0.325) —1.007(0.396) (-1.771,-0.207)
20 —11.450(5.430) (—23.840,-4.152) --- ---
dy —-0.951(10.480) (—21.460, 19.720) --- ---
DIC(Dhat) -372.7 (-383.2) -372.3 (-383.1)
SSE 0.6264 0.6259

e Cultural or ethnic background (CB): Aboriginal (0) and White (1).
e Learning ability (LA): Slow learner (0) Average learner (1).

Since the variable Days Absent, Y, counts the number of events that occurred during a year, this
dataset was analyzed by Cepeda-Cuervo and Cifuentes-Amado (2017) assuming a negative binomial
model NB(u, @), where the mean and the shape parameters follow linear regression structures . In this
paper, assuming that a school year has 200 days, we analyze this dataset by applying the u,u,0>6-tilted
beta binomial regression model, and assume the following linear regression structures:

logit(up;) = Bo + B3CB; + BaLA; (8.1
logit(4a?) = yo + 2 LA; (8.2)
logit(0) = go (8.3)
logit(3(u; — 1/3)) = do. (8.4)

This tilted beta binomial regression model was fitted to the dataset by applying Bayesian methods
and using the OpenBugs software. Thus, assuming the mean and variance regression structures given
by (8.1) to (8.4), respectively; the posterior parameter estimates, standard deviations and 95% credible
intervals are given in Table 1 (Model 1). Thus, from the posterior samples of gy and dj, and assuming
the mean and variance regression structures given by (8.3) to (8.4), a posterior sample of 6 and y, were
obtained, respectively, with the posterior parameter estimates and the respective standard deviations
(between parentheses) being 6 = 0,0013368(0.0005343), i1, = 0.4789(0.1520). From these estimates,
it is clear that the parameter estimate of € is close to zero. For this reason, a uo>-beta binomial
regression model, defined by (8.1) and (8.2) was fitted. Their parameter estimates are reported in the
same table (Model 2).

The parameter estimates of the mean and variance regression structures of Model 2 agree with
those of Model 1. The deviance information criterion (DIC) values and the sum of square errors are
similar, but the DIC value of Model 1 is a little smaller than the DIC value of Model 2. In both
models, the estimates of y, are negative, which shows that decreasing values of LA are associated
with increasing variance behavior.

The posterior credibility interval for a regression parameter is given by the real numbers L; and
Lg, L; < Lg such that the posterior probability, for which the parameter estimates lie between L;
and Lg, is 95%. These real numbers were obtained from the posterior sample assuming extreme tail
samples of 2.5%.
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Table 2: Parameter estimates of the u,u,0>0-tilted beta binomial regression models in the analysis of the seed
germination dataset

Model 3 Model 4
1-5 Param. Mean (S.D.) 95% Cred. Int. Mean (S.D.) 95% Cred. Int
Bo —0.822(0.266) (—1.404,-0.336) —0.774(0.264) (—8.003,-0.960)
Bi 0.466(0.238) (—0.001,0.935) 0.374(0.264) (=0.102,0.922)
B2 1.040(0.247) (0.559,1.540) 1.021(0.248) (0.528,1.515)
Y0 -3.436(1.014) (-5.891,-1.715) —3.864(0.969) (—6.219,-2.422)
Y1 —-1.832(1.847) (-5.930,1.358) — —
co —3.552(1.979) (=7.780,—-0.058) —3.903(1.841) (—8.003,-0.960)
c —-1.600(2.596) (—7.243,-1.358) — —
I 0.498(0.092) (0.005,0.651) 0.4922 (0.092) (0.347,0.652)
DIC 122.4 122.3
SSE 420.205 405.124

8.2. Seed germination dataset

The dataset analyzed in this section is available in Spiegelhalter et al. (2003) and corresponds to
the number of seeds that germinated from an initial quantity arranged in each of 21 dishes organized
according to a 2 by 2 factorial design (2 seed types and 2 root types). This data was initially reported
by Crowder (1978). The variables involved in the experiment are described as follows:

e Y: number of seeds germinated in each dish.

e n: number of seeds initially arranged in each dish.

o Xj: seed type (0) if it is O. aegyptiaca 73 and (1) if it is O. aegyptica 75.
e X,: root type (0) if it is a bean and (1) if it is a cucumber.

In this experiment, there are 21 observations (21 dishes). Since the variable Y represents the num-
ber of germinated seeds in each dish, this variable can be assumed to follow the TBB(u;,up,0°,60)
distribution, and thus, the seed germination dataset can be analyzed by applying the TBB linear re-
gression model defined by the regression structures given in equations (7.1) to (7.4), which include
all the explanatory variables in each of the regression structures. After the process of eliminating the
explanatory variables, the best model (smallest DIC value) has the following regression structures:

logit(uip) = Bo + Brx1; + Baxai (8.5
logit (407) = ¥o + y1x (8.6)
logit(6;) = co + c1x2; 8.7)

with constant tilted mean y,. Thus, assuming normal prior distribution N (0, 10%) with k = 5, for the
regression parameters (5;, y; and ¢;, i = 1,2,3) and uniform distribution g, ~ U(1/3,2/3) for the
mean of tilted distribution, the TBB(u,,u5, 02, 6) model was fitted to this dataset using OpenBUGS,
which isa free program used to fit Bayesian models that apply Gibbs algorithms (Spiegelhalter et al.,
2003). The posterior parameter inferences obtained from a sample of size 100000 with a burn-in of
10000 and taking one sample every 10 to reduce autocorrelation, are summarized in Table 2 (Model
3).

Given that 0 belongs to the 95% credible intervals of y; and c1, a tilted uo>-beta binomial model
with regression structures from (8.5) to (8.7) and without x; in the variance and mixture regression
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Table 3: Parameter estimates of the tilted pv-beta binomial regression models in the analysis of the seed
germination dataset

Model 5 Model 6
Param. Mean (S.D.) 95% Cred. Int. Mean (S.D.) 95% Cred. Int

Bo —-0.814(0.392) (—1.429, —0.268) —0.759( 0.252) (-1.292,-0.307)
Bi 0.444 (0.253) (—0.053, 0.934) 0.384 (0.258) (—0.097,0.923)
B2 1.057 (0.3632) (0.5149, 1.61) 1.016 (0.2484) (0.5147, 1.49)
Y0 3.388 (1.112) (1.561, 6.10) 3.690 (0.894) (2.331, 5.865)
Y1 1.742(2.041) (—1.745,6.507,) — —
co -3.399 (2.180) (-8.018, 0.547) —3.803 (1.818) (=7.811, —0.9436)
1 —1.663 (2.533) (—6.800, 3.169) — —
e 0.485 (0.092) (0.345, 0.482) 0.491 (0.094) (0.346, 0.651)

DIC 1232 123.1

SSE 411.233 408.215

structures, was fitted to this dataset and their posterior parameter inferences reported in Table 2 (Model
4). From this table, it is possible to conclude that Model 4 is the best (smallest DIC value, smallest
SSE and all the null hypotheses of the regression parameters rejected).

To compare the performance of the y,u,07>6- and the p1,u;,v6-tilted beta binomial regression models
in the analysis of the seed germination dataset, Table 3 presents the posterior parameter estimates that
are obtained when the p,u;,v6-tilted beta binomial regression models were fitted to this dataset, and
assuming the regression structures given by:

logit(uip) = Bo + B1x1; + Baxa; (8.8)
log(vi) = yo + y1x2i (8.9
logit(6;) = co + c1x2; (8.10)

with constant mean g, of the tilted distribution, which assume the same prior distributions, like in the
first application. The posterior parameter estimates of the tilted beta binomial model with regression
structures given by (8.8), (8.9) and (8.10) are reported in Table 3, Model 5. The parameter estimates
of the reduced tilted pv-beta binomial regression models are given in the same table (Model 6).

From the results reported in these tables, it is possible to conclude that the estimates of the means
and mixture regression parameter structures agree with the y,u,v6 and ;026 tilted beta binomial
regression models. The parameter estimates of the v and o> regression structures are congruent with
their parameter definitions. The DIC and SSE values are the smallest for Model 4 among the y;1,0-%6-
tilted beta binomial regression models. Thus, in this application, the Model 4 is assumed to be the
best.

9. Conclusions

This paper proposes the mean and variance parameterizations of the tilted beta binomial distribution,
which include two particular cases: Mean and variance beta rectangular distributions and mean and
variance beta binomial distribution, that improves the parameter interpretation of these distributions
defined from the mean and “dispersion” (v = p + g ) parameterizations of the beta distribution. From
the new parameterized distributions, new linear regression models that deal with overdispersed bi-
nomial datasets are proposed, where the mean and variance of the beta distribution, the mean of the
tilted distribution and the mixture parameter follow regression structures. These new linear regres-
sion models were fitted to the school absenteeism dataset and to the seed germination rate, which
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depended depending on the type of seed chosen, by applying Bayesian methods and using the Open-
BUGS software. The models show good performance and a clear interpretation of their regression
parameters.

Many extensions of these models can be proposed. One possibility is to use maximum likelihood
methods to fit the proposed models. Additionally, following Simas et al. (2010), the tilted beta
and beta-binomial nonlinear regression models can be formulated by assuming nonlinear regression
structures for the mean and variance of the beta distribution component in the mixture.

According to Hahn (2022), the tilted beta-binomial distribution is clearly more appropriate than
the beta-binomial distribution to analyze datasets with overdispersion. Thus, taking into account the
better interpretability of the mean and variance, the tilted beta regression models can be proposed as
good options for analyzing analyze these types of overdispersed count exit/failure datasets.

In many areas of knowledge there is a wide range of applications with random variables of interest
of the exit/failure type, where the tilted mean and variance beta regression models can be applied.
These types of data analysis are also possible extensions that can be used by researchers and students
of statistics, and in the addition to studies and development of statistical packages for fitting the
proposed models.
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