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Abstract
In this paper we consider the problem of forecasting binomial time series, modelled by the binomial autore-

gressive model. This paper considers proposed by McKenzie (1985) and is extended to a higher order by Weiß
(2009). Since the binomial autoregressive model is a Markov chain, we can apply the earlier work of Bu and
McCabe (2008) for integer valued autoregressive(INAR) model to the binomial autoregressive model. We will
discuss how to compute the h-step-ahead forecast of the conditional probabilities of XT+h when T periods are
used in fitting. Then we obtain the maximum likelihood estimator of binomial autoregressive model and use it
to derive the maximum likelihood estimator of the h-step-ahead forecast of the conditional probabilities of XT+h.
The methodology is illustrated by applying it to a data set previously analyzed by Weiß (2009).
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1. Introduction

When the observed time series are low frequency count, the autoregressive moving average(ARMA)
models can not be applied to integer-valued case. The reason is that the multiplication of an integer
by a real number generally gives noninteger value. There are models using thinning operations in
place of scalar multiplication in ARMA models to obtain an ARMA-like autocorrelation structure.
In particular, the binomial thinning operation developed by Steutel and van Harn (1979) is the most
popular thinning operation which is used to model integer-valued time series data. The purpose of the
binomial thinning is to ensure the integer discreteness of the process. It is defined as α ◦ X =

∑X
i=1 Yi,

where Yi are assumed to be i.i.d. Bernoulli random variables with P(Yi = 1) = α, P(Yi = 0) = 1 − α,
and independent of X. The first integer-valued ARMA(INARMA) model using binomial thinning
operation is INAR(1) model which is introduced by McKenzie (1985) and independently by Al-Osh
and Alzaid (1987). For references on recent developments on INARMA models, refer to McKenzie
(2003), Weiß (2008), Kim and Park (2008) and Park et al. (2006).

The objective of this paper is the forecasting issue of time series of binomial counts. Even if
binomial distribution is very simple, it can not be marginal distribution of INAR(1) model, and for
the reason, see Weiß (2008). The binomial AR(1) model suggested by McKenzie (1985) is designed
for only binomial counts, still using binomial thinning operation and Weiß (2009) proposed binomial
AR(p) model. Binomial AR(p) model is useful tool to model for time series of binomial counts,
because it has an AR(p)-like autocorrelation structure and the model order p can be identified with
the aid of the partial autocorrelation function.

This work was supported by the Korea Research Foundation grant funded by the Korean Government(MOEHRD, Basic
Research Promotion Fund) (KRF-2007-411-J03302).

1 Corresponding author: Research Professor, Institute of Economics, Korea University, Anam-dong, Seongbuk-gu, Seoul
136-701, Korea. E-mail: starkim@korea.ac.kr



442 Hee-Young Kim, Yousung Park

A practical problem in forecasting in the integer valued time series models using binomial thinning
operation is the use of binomial thinning operation, which makes Xt into the convolution of several
components. There are numerous efforts to forecast integer valued time series model using a thinning
operation to resolve theses problems and to produce coherent forecasting: see Freeland and McCabe
(2004) and Jung and Tremayne (2006) and Kim and Park (2006a,b, 2010) and Bu and McCabe (2008).
Of theses articles, Bu and McCabe (2008) produced forecasting in INAR(p) model by treating the
model as a Markov chain.

In this paper, we apply Bu and McCabe (2008)’s idea to the binomial AR(p) model to build
confidence intervals for the probabilities of all possible values taken the process in the future, since
the binomial AR(p) model can be viewed as a Markov chain.

This paper is organized as follows. Section 2 reviews the binomial AR(1) and the binomial AR(p)
model, and Section 3 describes a method for producing h-step-ahead forecasts of the conditional
probability distribution of the binomial AR(p) process {Xt}. The h-step-ahead forecasts of conditional
probability distribution is calculated by Markov chain approach and the estimation is done in max-
imum likelihood framework. The forecasting procedure is illustrated with an empirical example in
Section 4. In addition, we consider a proportional odds model as a competitor of binomial AR model
(which is a regression model for a categorical time series) and we compare the fitted results. Section
5 outlines the conclusion and results.

2. The Binomial Autoregressive Models

Time series models for binomial marginal distribution are presented here. The first order dependence
is modelled by binomial AR(1) model proposed by McKenzie (1985) and the higher order dependence
is modelled by binomial AR(p) model of Weiß (2009). In this section we briefly summarize the basic
properties of these models, for obtaining a deeper understanding through the graphical illustration of
these models, refer to Kim and Park (2010).

2.1. The Binomial AR(1) model

Definition 1. (Binomial AR(1) model, McKenzie, 1985) Fix n ∈ N. Let π ∈ (0, 1), and ρ ∈ [max(−π/
(1 − π),−(1 − π)/π), 1]. Define β = π(1 − ρ) and α = β + ρ. The process {Xt},

Xt = α ◦ Xt−1 + β ◦ (n − Xt−1), t ≥ 1, X0 ∼ B(n, π) (2.1)

is said to be a Binomial AR(1) model, where all thinnings are performed independently of each other,
and the thinnings at time t are independent of {Xs, s < t}.

Suppose there are n units which are independent of each other, either in state 1 or state 0 and Xt is
the number of units being in state 1 at time t. Then binomial AR(1) model defines the number of units
being in state 1 at time t to be sum of two random variable, the number of units which are still in state
1 at time t, with individual transition probability α, and the number of units which moved from state
0 to state 1 at time t, with individual transition probability β. The former is α ◦ Xt−1 and the latter is
β ◦ (n − Xt−1).

The marginal distribution of binomial AR(1) model is B(n, π), and so E(Xt) = nπ, Var(Xt) = nπ(1−
π). The autocorrelation function(ACF) of {Xt} as defined by Equation (2.1) is given by ρ(k) = ρk for
k = 1, 2, . . . , is identical to the ACF of a usual AR(1) process, also permitting negative autocorrelation.
This property is good characteristic of binomial AR(1) model compared to INAR(1) model using the
same binomial thinning operation.
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The conditional probability is

P(Xt = k|Xt−1 = l) =
min(k, l)∑

m=max(0, k+l−n)

(
l
m

)(
n − l
k − m

)
αm(1 − α)l−m(1 − β)n−l+m−k. (2.2)

And the conditional expectation and the conditional variance are respectively

E(Xt |Xt−1) = ρXt−1 + nβ and Var(Xt |Xt−1) = ρ(1 − ρ)(1 − 2π)Xt−1 + nβ(1 − β).

2.2. Binomial AR(ppp) model

Since the introduction of first-order model, it took a long time to develop higher order model. More
recently, a higher-order autoregressive model is proposed by Weiß (2009) as a tool for modelling and
generating sequences of dependent binomial process.

Definition 2. (Binomial AR(p) model, Weiß, 2009) Let π ∈ (0, 1) and ρ ∈ [max(−π/(1 − π),−(1 − π)/
π), 1]. Define β = π(1 − ρ) and α = β + ρ. Let {Dt} be an i.i.d. multinomial distribution with
parameters Dt = (Dt,1, . . . ,Dt,p) ∼ MULT (1; ϕ1, . . . , ϕp). Let a process {Xt} with range {0, . . . , n}
follow the recursion

Xt = Dt,1
(
α ◦t Xt−1 + β ◦t (n − Xt−1)

)
+ · · · + Dt,p

(
α ◦t Xt−p + β ◦t (n − Xt−p)

)
=

p∑
i=1

Dt,1 fi(Xt−i), (2.3)

where “ ◦t+k ” indicates that the thinning is performed at time t + k and fk(Xt) is a random function
defined in the form α ◦t+k Xt + β ◦t+k (n − Xt).

If conditions C1∼C3 are satisfied, it is said to be a binomial AR(p) process. And in addition to
C1∼C3, if C4 is satisfied, then it is called a binomial AR(p)-Independent thinning process.

(C1) The thinnings at time t are performed independently of each other and of {Dt}.

(C2) Dt = (Dt,1, . . . ,Dt,p) is independent of all {Xs, s < t} and { f j(Xs), s < t, j = 1, . . . , p}.

(C3) The conditional probability

P
(

f1(Xt) = i1, . . . , fp(Xt) = ip|Xt = xt, Xt−k = xt−k, k ≥ 1; f j(Xt−k) = zt−k, k ≥ 1, j = 1, . . . , p
)

= P
(

f1(Xt) = i1, . . . , fp(Xt) = ip|Xt = xt

)
.

(C4) All thinnings f1(Xt), . . . , fp(Xt) are conditionally independent, conditioned on Xt.

Weiß (2009) showed that the ACF of binomial AR(p)-Independent thinnings process satisfies the
usual form of the Yule-Walker equations for usual AR(p): ρ(k) = ρ

∑p
i=1 ϕiρ(|k − i|), and the partial

autocorrelation function(PACF) is ϕkk = 0, k > p. The conditional of binomial AR(p)-Independent
thinnings process is

P
(
Xt = x|Xt−1 = xt−1, . . . , Xt−p = xt−p

)
=

p∑
i=1

ϕi

x∑
y=0

(
xt−i

y

)
αy(1 − α)xt−i−y

(
n − xt−i

x − y

)
βx−y(1 − β)n−xt−i−x+y. (2.4)
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And the conditional expectation of binomial AR(p)-Independent thinnings process is

E(Xt |Xt−1, . . . , Xt−p) = nπ(1 − ρ) + ρ
p∑

i=1

ϕiXt−i.

3. Forecasting the Conditional Distribution of hhh-Step-Ahead

Subsection 3.1 presents method for computing the h-step-ahead forecast of the conditional probabili-
ties of XT+h given XT , XT−1, . . . , XT−p+1 when the parameters of the model are known. Subsection 3.2
deals real situation of unknown parameters, so how to compute the likelihood function of binomial
AR(p) model and derive the asymptotic distribution of the MLE of the h-step-ahead forecast of the
conditional probabilities. Our approach is based on Bu and McCabe (2008) in INAR(p) model.

3.1. A Markov chain approach: Parameters are known

We first define a vector time series {Yt := (Xt−p+1, Xt−p+2, . . . , Xt)
′ } from a binomial AR(p) process

{Xt}. Then it follows that {Yt} is a first-order Markov chain on a finite state space Sp, where S is the
state space of {Xt}. For example, for binomial AR(p) process {Xt}, the state space S is {0, . . . , n}, and
for p = 2, Sp = S2 is

S2 =

{(
0
0

)
,

(
0
1

)
, . . . ,

(
0
n

)
,

(
1
0

)
,

(
1
1

)
, . . . ,

(
n
n

)}
.

And the transition probabilities of making a transition from one state at time t − 1 to another state at
time t are given by

P
(
Yt = (l, k)

′ |Yt−1 = ( j, i)
′)
= P (Xt−1 = l, Xt = k | Xt−2 = j, Xt−1 = i)

= P (Xt = k, Xt−1 = l | Xt−1 = i, Xt−2 = j)

=

{
P (Xt = k | Xt−1 = l, Xt−2 = j) , if l = i,
0, if l , i, (3.1)

where (l, k)
′

and ( j, i)
′ ∈ S2. The probability of Equation (3.1) is given by Equation (2.4) with p = 2,

i.e., P(Xt = x|Xt−1 = xt−1, Xt−2 = xt−2) =
∑2

i=1 ϕi
∑x

y=0

(
xt−i
y

)
αy(1 − α)xt−i−y

(
n−xt−i

x−y

)
βx−y(1 − β)n−xt−i−x+y.

Therefore we can make one-step transition probability matrix of process Yt = (Xt−p+1, Xt−p+2, . . . ,

Xt)
′

using the above scheme and denote it as Qp,n. In the case of p = 2, n = 2, the matrix Q2,2 can be
written as

Xt 0 1 2 0 1 2 0 1 2
Xt−2 Xt−1 0 0 0 1 1 1 2 2 2

Q2,2 =

0 0 

p(0|0, 0) p(1|0, 0) p(2|0, 0) 0 0 0 0 0 0 

0 1 0 0 0 p(0|1, 0) p(1|1, 0) p(2|1, 0) 0 0 0
0 2 0 0 0 0 0 0 p(0|2, 0) p(1|2, 0) p(2|2, 0)
1 0 p(0|0, 1) p(1|0, 1) p(2|0, 1) 0 0 0 0 0 0
1 1 0 0 0 p(0|1, 1) p(1|1, 1) p(2|1, 1) 0 0 0
1 2 0 0 0 0 0 0 p(0|2, 1) p(1|2, 1) p(2|2, 1)
2 0 p(0|0, 2) p(1|0, 2) p(2|0, 2) 0 0 0 0 0 0
2 1 0 0 0 p(0|1, 2) p(1|1, 2) p(2|1, 2) 0 0 0
2 2 0 0 0 0 0 0 p(0|2, 2) p(1|2, 2) p(2|2, 2)

,

where P(i| j, k) is denote P(Xt = i|Xt−1 = j, Xt−2 = k). These results may be easily extended to arbitrary
p and n, so we can obtain the one-step transition probability matrix Qp,n as a (n+1)p× (n+1)p matrix.
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To represent the probabilities of finding a system in each of the (n + 1)p different states at a given
time t, define (n + 1)p × 1 vector πt. For example, p = 2, n = 2, the vector πt is

πt =
(
P0,0

t , P0,1
t , P0,2

t , P1,0
t P1,1

t , P1,2
t , P2,0

t , P2,1
t , P2,2

t

)
, (3.2)

where Pi, j
t is P(Xt−1 = i, Xt = j).

And for each i ∈ {0, 1, . . . , n}, define (n + 1)p × 1 vector vi, which has n + 1 entries equal to
one and all others equal to zero. In the case of p = 2, n = 2, v0 = (1, 0, 0, 1, 0, 0, 1, 0, 0)

′
, v1 =

(0, 1, 0, 0, 1, 0, 0, 1, 0)
′

and v2 = (0, 0, 1, 0, 0, 1, 0, 0, 1)
′
.

To compute P(XT+h = i | XT , . . . , XT−p+1), i = 0, . . . , n, we require the Markov chain theory: (i)
the h-step transition probability matrix is equal to the hth power of the one-step transition matrix, i.e.,
Q(h) = Qh, (ii) the h-step-ahead forecast of the probability vector is equal to the current probability
vector times the h-step transition probability matrix, i.e., πT+h = πT Q(h). For further details on the
Markov chain theory, see Meyn and Tweedie (1993) and Kemeny and Snell (1976). Therefore, the
h-step-ahead forecast of the conditional probability of XT+h given XT , XT−1, . . . , XT−p+1 is written as
follows

P
(
XT+h = i | XT , . . . , XT−p+1

)
= π

′

T+hvi (3.3)

= π
′

T Qhvi, (3.4)

where i = 0, . . . , n.

3.2. A Markov chain approach: Parameters are unknown

Conditioning on the first p observations leads to a simple form of the likelihood L(ϕ1, ϕ2, . . . , ϕp−1, α,
β) =

∏T
t=p+1 P(Xt | Xt−1, . . . , Xt−p+1) and so knowledge of the transition probabilities is sufficient for

its construction. And we know the explicit formula of transition probabilities of binomial AR(p)
model from Equation (2.4). Under the standard regularity conditions, the maximum likelihood es-
timator(MLE) of θ = (ϕ1, ϕ2, . . . , ϕp−1, α, β)

′
is asymptotically normally distributed around the true

parameters θ0, that is
√

T (θ̂ − θ0)
d→ N(0, i−1), where i−1 is the inverse of the Fisher information

matrix.
Denote the h-step-ahead forecast of the conditional probability function as

gi (θ) := PT (XT+h = i | θ) , i = 0, . . . , n

to emphasis its dependence on the parameters θ and given observations of the process up to time
T . And we already know from Equation (3.4) that gi(θ) is given by π

′

T Qhvi. As mentioned in the
Section 3.1, (n+ 1)p × 1 two vectors πT and vi are composed of only one and zero and the elements of
(n + 1)p × (n + 1)p matrix Q are given Equation (2.4).

Therefore, the asymptotic distribution of the MLE of the h-step-ahead forecast of the conditional
probability function is easily obtained by the delta method as follows. Construct two (n + 1) × 1
vectors g(θ̂) := (g0(θ̂), . . . , gn(θ̂))

′
and g(θ) := (g0(θ), . . . , gn(θ))

′
. Then the MLE of the h-step ahead

forecasts, g(θ̂), has asymptotically multivariate normal distribution

√
T

(
g(θ̂) − g(θ)

)
=
√

T




g0(θ̂)
...

gn

(
θ̂
)

 −


g0(θ)|θ=θ0

...
gn(θ)|θ=θ0


 d→ N

(
0, Di−1 D

′)
, (3.5)
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(a) Plot

(b) SACF (c) SPACF

Figure 1: Time series plot, sample ACF, and PACF of the access counts: (a) Time series plot; (b) sample ACF;
(c) sample PACF.

where i is the Fisher information matrix and D = ∂g(θ)/∂θ
′ |θ=θ0 is a matrix of partial derivatives.

Therefore, the asymptotic 100(1 − α)% confidence interval for gi(θ), i = 0, . . . , n is given by

P̂T (XT+h = i) ± zα/2σi+1
(
θ̂
)
, (3.6)

where zα/2 is the 100(1 − α/2) percentile point of a standard normal distribution, and σi+1(θ̂) is the
square root of (i + 1, i + 1) element of estimated T−1 Di−1 D

′
.

4. Empirical Application

As an application of the results obtained above, we will apply the methods in Section 3 to the data
used in Weiß (2009) who originally introduced binomial AR(p) model. The data are the number of
access, say Xt, to the home directory of six servers of the Department of Statistics at the University
of Würzburg for each minute. The analyzed data are collected on 29th day of November, 2005 and
consist of 661 observations. Evidently, Xt take value in {0, 1, . . . , 6}.

We use observations {Xt : 357 ≤ t ≤ 656} to estimate parameter vectors, leaving {Xt : 657 ≤
t ≤ 661} to evaluate the out-of-sample forecast performance of the procedure. Therefore we use 300
observations sample size and the prediction horizon h are h = 1, . . . , 5. The Figure 1(a) displays plot,
sample autocorrelation function, and sample partial autocorrelation function of the 300 observations.
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Note that Figure 1(b) and Figure 1(c) show a typical pattern of the AR model. Although the possible
range of Xt is from 0 to 6, the observed counts are composed of 56.67% 0, 32.67% 1, 8.00% 2, 2.00%
3 and 0.67% 4. The last two observations of {Xt : 357 ≤ t ≤ 656} are X655 = 3, X656 = 2 and observed
value of 657–661 are X657 = 1, X658 = 1, X659 = 0, X660 = 1, X661 = 0.

Kim and Park (2010) tried to find the optimal order of binomial autoregressive model representing
theses data, we accept the earlier work of them and so we estimate binomial AR(2) model which is
defined via

Xt = Dt,1

(
α ◦t Xt−1 + β ◦t (n − Xt−1)

)
+ Dt,2

(
α ◦t Xt−p + β ◦t (n − Xt−p)

)
,

where (Dt,1,Dt,2) i.i.d.∼ MULT(1; ϕ1, ϕ2).
In this article, it is more convenient to work with parameter vector θ = (α, β, ϕ1)

′
than (π, ρ, ϕ1)

′

in Weiß (2009). The model parameter are estimated by conditional ML(CML) which is obtained
numerically by maximizing the conditional log-likelihood function from Equation (2.4). We utilize
NLPTR optimization subroutine of SAS/IML procedure to obtain CML estimates, with Yule-Walker
estimates as initial values and NLPFDD optimization subroutine of SAS/IML procedure to acquire
estimated asymptotic standard error from the inverse of the Hessian. The CML estimates and the
estimated asymptotic standard errors are α̂ = 0.3590995(0.0629169), β̂ = 0.0686873(0.00821), ϕ̂1 =

0.5502303(0.1661743).
To obtain 100(1 − α)% confidence interval for P656(X656+h = i|X656 = 3, X655 = 2), h = 1, . . . , 5

in Equation (3.6), we note the last two observations of {Xt : 357 ≤ t ≤ 656} are X655 = 3, X656 = 2.
This means that at t = 656 the system is in state (3,2) with probability 1. So we fix 49 × 1 vector πT

in Equation (3.2) as follows

π656 =
(
P0,0

656, . . . , P
3,1
656, P

3,2
656, P

3,3
656, . . . , P

6,6
656

)
= ( 0, . . . , 0, 1, 0, . . . , 0).

Then we are ready to calculate 100(1 − α)% confidence interval for P656(X656+h = i |X656 =

3, X655 = 2), i = 0, . . . , 6; h = 1, . . . , 5. Table 1 shows point estimates for h = 1, 2, . . . , 5. For
h = 1, the largest estimated conditional probability is P656(X656+1 = 1) = 0.422616 and at t = 657 ob-
served value is 1. This phenomenon that the value taking the largest estimated conditional probability
is identical with the observed value occurs at h = 1, 2, 3, 5.

Figure 2 displays the 95% confidence intervals for the one-, two, three-, four- and five-step ahead
conditional probability taking the middle of the 95% confidence intervals as a point estimate of the
probability in Table 1. We can notice that the confidence intervals at the different mass points are
similar for h = 4 and 5. It is explained by the fact the Binomial AR(2) model is stationary, in
stationary time series model, the forecast distributions approach to the marginal distributions as lead
time h increases.

We compare the obtained results from binomial AR(2) model with the the fit using some recent
studies by Fokianos and Kedem (2003) on categorical time-series to the access count data. For recent
developments concerning regression theory for time series, refer to Fokianos and Kedem (2002, 2003).
The cumulative logistic or proportional odds model is a model for ordinal categorical time series.
Suppose we have a categorical time-series {Xt}, t = 1, . . . , T , and let m be the number of categories.
In access count data, Xt can take value in {0, 1, . . . , 6}, but the observed counts {0, 1, . . . , 4} and so we
set m = 5.
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Table 1: Point estimates for the h-step ahead conditional probability for the access counts data
h 0 1 2 3 4 5 6

P̂(X656+h = i | X655 = 3, X656 = 2)
h = 1 0.2665665 0.4226160 0.2423446 0.0616543 0.0073097 0.0004020 0
h = 2 0.3878023 0.4094812 0.1680294 0.0315370 0.0030040 0.0001433 0
h = 3 0.4762983 0.3775630 0.1230050 0.0210403 0.0019923 0.0000991 0
h = 4 0.5109036 0.3635069 0.1072703 0.0167825 0.0014674 0.0000680 0
h = 5 0.5288321 0.3555084 0.0995128 0.0148453 0.0012448 0.0000556 0

Figure 2: The 95% confidence intervals for the one-, two-, three-, four- and five-step ahead conditional probabil-
ity for the access counts data .

We can express the tth observation by the vector Xt = (Xt0, . . . , Xt3)
′

with elements

Xt j =

{
1, if the jth category is observed at time t,
0, otherwise,
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Table 2: Results from Binomial AR(2) and Proportional odds models applied to the access counts data
Model Number of parameters AIC BIC

Binomial AR(2) model 3 589.77719 600.88854
Proportional odds model of order 1 8 590.025 619.602
Proportional odds model of order 2 12 591.721 636.086

for t = 1, . . . , T and j = 0, 1, . . . , 3.
The cumulative logistic or proportional odds model has the form

log
{

P(Xt ≤ j | Ft−1)
P(Xt > j | Ft−1)

}
= θ j + γ

′
zt−1, i = 0, 1, . . . , 3

in which θ j are intercept parameters, γ are vector of parameters, zt−1 is a covariate vector of the same
dimension of γ. The covariate vector zt−1 may consist of lagged values of the response process {Xt}
and of any other auxiliary process known to the observed at time t. The σ-field Ft−1 is generated by
zs, s ≤ t − 1,

We fit the following two proportional odds models to the access count data: a first-order model
given by

log
{

P(Xt ≤ j |Ft−1)
P(Xt > j |Ft−1)

}
= θ j + γ1X(t−1)0 + γ2X(t−1)1 + γ3X(t−1)2 + γ4X(t−1)3, j = 0, 1, . . . , 3 (4.1)

and a second-order model given by

log
{

P(Xt ≤ j |Ft−1)
P(Xt > j |Ft−1)

}
= θ j + γ1X(t−1)0 + γ2X(t−1)1 + γ3X(t−1)2 + γ4X(t−1)3

+ γ5X(t−2)0 + γ6X(t−2)1 + γ7X(t−1)2 + γ8X(t−1)3, j = 0, 1, . . . , 3. (4.2)

Table 2 reports the results of binomial AR(2) and two proportional odds models, where the second
column lists the number of parameters in the model and the next two columns correspond to Akaike
Information Criterion(AIC) and Bayesian information criterion(BIC). We see that the AIC criterion
and the BIC criterion are minimized for the binomial AR(2) model. Therefore it seems reasonable to
conclude that binomial AR(2) model is adequate for the access count data.

5. Conclusion

This study focused on the method of forecasting procedures in a binomial AR(p) model which is
developed by Weiß (2009) to model for time series of binomial counts. Since the binomial AR(p)
model can be regarded as a Markov chain, we applied the method introduced by Bu and McCabe
(2008) to the binomial AR(p) model. We derived the h-step-ahead forecasts of conditional probability
distribution using a Markov chin representation of the model, and obtained the MLE of those forecast
mass function. We employed it to real data set which are the number of access times to the home
directory of six server of the Department of Statistics of the University of Würzburg for each minute.
Our analysis showed that its usefulness in binomial AR(p) model. In addition, we compared the fitted
results of binomial AR(p) model and another regression time series model, i.e., proportional odds
model. The results indicate that binomial AR(p) model is more satisfactory to the access counts data.
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