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Bayesian Analysis for
Random Effects Binomial Regression

Dal Ho Kim!, Eun Young Kim?2)

Abstract

In this paper, we investigate the Bayesian approach to random effect binomial
regression models with improper prior due to the absence of information on
parameter. We also propose a method of estimating the posterior moments and
prediction and discuss some general methods for studying model assessment. The
methodology is illustrated with Crowder's Seeds Data. Markov Chain Monte Carlo
techniques are used to overcome the computational difficulties.
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1. Introduction

In some regression problems, the response variable is categorical, often either success or
failure. For such problem, the normal linear model is sure to be inappropriate, because normal
errors do not correspond to a zero/one response. One important method that can be used in
this situation is called binomial regression. It is one special case of the class of generalized
linear models (GLMs) first proposed by Nelder and Wedderburn(1972). One useful extension
involves models with random effects in the linear predictor. This is so-called generalized
linear mixed models (GLMMs). GLMMs are known to be useful for accommodating the
overdispersion often observed among outcomes; for modeling the dependence within clusters;
for producing shrinkage estimates in multiparameter problems, such as the construction of
maps of small area disease rates; and for smoothing of regression relationships.

As Nelder(1972) has pointed out in his discussion of the article by Lindley and Smith(1972)
on Bayesian methods in regression, there is a strong connection between the random effects
and Bayesian regression models. In Bayesian analysis, improper prior may be used for a
variety of reasons. In hierarchical models, one might impose improper prior distributions due
to the absence of information on the hyperparameters at the lower levels of the hierarchy. In
multiparameter situations, elicitation of prior information and subsequent formulation into a
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distribution can be a difficult task. In such cases one might again consider analysis with
improper priors to reflect vague information (Ibrahim and Laud, 1991). When one imposes
improper prior distributions on the parameter, the question of the properpriety of the posterior
distribution arises.

Leonard(1972) discussed Bayesian hierarchical models for binomial data. Zellner and Rossi
(1984) gave an overview of Bayesian methods for binomial regression models. Bedrick,
Christensen and Johnson(1997) have provided a complete discussion of Bayesian inferences for
binomial regression without the random effect. Breslow and Clayton(1993) gave an overview
of frequentist analysis for GLMMs. Zeger and Karim(1991) discussed GLMMs in Bayesian
perspective. But we are unable to verify that the prior considered by Zeger and Karim
necessarily leads to a proper posterior.

In this paper, we investigate the Bayesian approach to binomial regression models with
improper prior due to the absence of information on parameter. The methodology is illustrated
with Crowder’s Seeds Data. A concern in this data was the presence of extra-binomial
variation. One way to explain this overdispersion is through random differences in the rate of
germination between plates. So, this analysis is done for the random effects model. Extensions
of generalized linear models to include random effects have been hampered by the need for
numerical integration. In this paper, we adopt a Markov Chain Monte Carlo (MCMC) method
to overcome the computational limitations.

The outline of the remaining sections is as follows. In Section 2, we introduce a random
effects binomial regression models and find sufficient conditions for the propriety of posteriors
under improper priors. Also we briefly discuss the application of the Gibbs sampler to our
setting. In Section 3, we propose a method of estimating the posterior moments and prediction.
In Section 4, we discuss some general methods for studying model assessment. This section
also demonstrates how they can be applied to the proposed models. Finally, Section 5 provides
the Bayes analysis of a real dataset, and compares it with other methods.

2. Random Effects Binomial Regression Models

Consider regression data (#;, y;, x;),i=1,...,N, where the y;'s are number of
successes from independent binomial #; random variables and x,’'s are known vectors of
covariates, that is y; ~ Binomial (#;, p;).

We write y=(y,,-,y») " and 8=(6,,, 0y 7. Also, we write X =( xy,*, xXy) and

assume that rank ( X) =p.
Then the likelihood for the data is

L(oly) = 11 (’y’) [F()T” 1= F(6,)] ™",

1=
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where the 6;’s are modelled as
6; = FY(p,) = xiTB+ u; ,
and F( -) corresponds to either the logistic, probit or complementary log-log models, that is

6;
e

] +e0‘ , logistic
F(8) ={ o), probit
1— exp[—e”], complementary log—log .

The link function is FYp) =6, where F7'(p)=loglp/(1—p)], 07 (p), and
log[ —log(1—p)] for the three models, respectively. B(px1) is the vector of unknown
regression coefficients, and #; is the random effect associated with ith subject. It is assumed
that the w#; are iid. N(0,02). Finally, it is assumed that B and 7, = ()71 are
marginally independent with B ~ uniform(R?) and f(7r,) = exp(—a/2 »,) r2/*7! with
a>0 and &> 0. This is referred to as a Gamma<(a/2, 6/2) prior.

Then the joint posterior density of 8, B and 7, given y under the link function F RED)

is given by

(0,8, 7,0y, F) o ,ﬁ] (Z:) [F(8)) [1—F(8)]™

1 -a, b_
xljl(rfexp[-—%(ﬁ,-— x,-TB)Z])-e 22 1.

A necessary and sufficient condition for the propriety of the posterior in the binomial case

2.1

is provided in Natarajan and McCulloch(1995) when « =0, but £ is known. The following

theorem provides sufficient conditions under which the joint posterior of &, 8 and 7, given

¥y is proper.

Theorem 1. Let 6, ( §;, 6;) (i=1,,N). Assume a>(. Suppose

0;

I; = fo

-

(Z:) [F(O)1 ' [1—F(8)1™ " d8; < oo (2.2)

for at least one 7. Also, let s+ b > p, where s is number of indices which I; < o©. Then

the joint posterior of &, 8 and 7, given y is proper.

Proof. Consider the joint posterior of @, B and 7, given y is given by (2.1). First
integrate out those ; for which I; given in (2.2) is infinite. Let 8" denote the set of 8;’s

for which I; is finite. By assumption @~ has at least one element. Then, the joint posterior
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of 8%, Band 7, given y is

p( 0‘, ﬂ’ 7’u|}’,F) « zuoo(:)tl) [F(ﬁz)]}'[].'_F(ez)] e
s e, 5
X?’uz exp[~— ——;—" ,';fv'(‘m(ﬁi _ xiTB)Z] Lo 2 7u2 1

First integrating with respect to A and then integrating with respect to 7,, it follows that
* n; i n;—y;
p07ly) = K T () LR (o0 [1-F (001",
T oo\ Yy
where K(> () is a constant which does not depend on the ;. From the assumption of the

theorem, it follows now that fp( 0'ly)do* < x.

The hierarchical Bayes (HB) method is implemented via the MCMC integration technique.
This requires generation of samples from full conditionals for computing marginal posterior

distributions of B8, 7, and §,’s respectively. The required full conditionals are

(i) BlO,r,y~NU(X'X)'X 0 r,)(X X))

(ii) 7,10, 8. vy~ Gamma(%{a-i-g;(ﬁ,-— x,-TB)z}, l{b-i—N}) (2.3)

(i) 7(8:18, 70, ») & LF (61" [1=F(81" ™" - exn| = 5(0: = %7 %]

It is easy to generate samples from the full conditionals given in (1) and (ii). However,
(ii1) is not a standard density from which one can generate samples easily. This difficulty is
overcome by employing the Metropolis-Hastings algorithm (Chib and Greenberg, 1995). An
alternative approach would be to use the adaptive rejection sampling (ARS) of Gilks and Wild

(1992) since 7(@;| - ) are all log-concave. But the latter is not pursued here.

3. Bayesian Inference
3.1 Estimation of Posterior Moments

i now [8,8, 7,ly] denotes the joint posterior density of B, & and 7, given y, the

posterior pdf of B given v, [Bly] is given by
[8ly1 = [ [(6.8.r.\y1d0dr, = [ [1816,7.,y116,7.1y1d0dr,.

In order to compute the posterior pdf [ Bly], one typically first derives [B18,7,, ¥] and

then [ @, r,ly]. The distribution of B8 given &, 7, and y is given in (2.3). The second
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density in the integrand of [Bly], [8,7.ly] is

[6,7.1y1 = [[6,8.7.1v1d8

« W { () tromwu-ren"}.e "

Hence, the posterior mean for the B is now obtained as
E[Bly] = E[E(B18,7,, »)ly] = E(X'X)"'X"0ly], (3.1)
and the covariance matrix for the B is
Cov(Bly) = E[Cov(Bl8,7,,y)|y]+ Cov[E(BIE, 7., ¥)|y]
= Elr, (X’ X)7'y] (3.2)
+EH{(XX)' X0} (X’X)7'X" 6} |y]
— E(X'X)7'X'01y]- EL(X" 07X 0)I5].
To estimate the posterior moments using Gibbs sampling, we use the Rao-Blackwellized

estimates as in Gelfand and Smith (1991). So, the posterior mean given in (3.1) is
approximated by

E[Bly] = %E(X'X)“X'a“’.
Also, using (3.2) the covariance matrix is approximated by

Cov(Bly) = _},g((rik))_l(X'X)—l)
+ _i‘g({(X’X)—lx'a(k)}, {(X'X)—IX'o(k)}r\)

- (F R xe®) - (£ Bl xx o)),
where {r.”, g® }5-, is Gibbs output from the full conditionals.

Similarly, the posterior pdf of 7, given vy, [7,ly] is given by

[ry] = [ [[6.87.y1d0d8 = [ [(7.160.8.y1-16,Bly1d64d8.
The distribution of #, given &, B8 and y, [7»,10, 8, y] is also given in (2.3) and
integrating 7, out of [ @, B,7,ly] gives

[6,8ly] = [16.8.7.y)dr,

—-%(b+1v)

< I [ (’y’) [F(6)1 [1- F(6))] } {a+ 0, % 8)’)

Hence, the posterior mean for the 7, satisfies the equation
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b+ N
a+ g(ei — % B)*

Elr,ly]l] = E[E(r,16,8 v)|ly] = E

y],
and it is approximated by

Elrlyl = —}Jg bt N . (33)
= a+ﬁi(9§k)— x/ BP)?

Also, we obtain the posterior variance for the 7,

V(r,dy) = E[V(7, 10,8, y)Iy]1+ V[E(r,16,8 y)ly]

= FE 2(b+ N) B bt N )
o+ 20— =07 | at 200 - x,-'B)Z} y}
__biN 2 (34)
[ a+ gl(ai _ xi'B)Z ]]
~ 1 2(b+N) L1 b+ N 2
" g‘ {a+ ﬁ‘l(gfk) - xi’ﬁ(k))z}z L ,.2\ a+ g’l(a}k) — x/ B2 )

b+ N 2

>
L & a+2f‘l(0l§k) — x g2

As the case for B, the approximations of (3.3) and (3.4) are by the Rao-Blackwellized

estimates.
4.2 Prediction

We have a new case, not used to estimate parameters. We would like to predict the number
of 'successes’, ¥ni+; in a sequence of J iid. Bernoulli trials, with covariate xx;;. The

predictive probability of success in the jth new single trial, Yy is

Py =1lly) = fp(yN+l,)’ = 110n4+1) 2(On+11y) dOnsy

= ElF(8y)ly] =~ L S1F(a8, =1,

where 01(\;/21 ~ N(x'NHB(k),(r,(,k))_l), k=1,2,..,L, and B and rf,k) are outputs
from the full conditionals using the Gibbs algorithm. Then the predicted number of successes,

Yy+1 in J trals is

v =J- (“%j ;F(QI(\Ik-)FI )

We can compare the predicted number of successes to the actual observed responses and get
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a measure of the predictive accuracy of our model.
4. Model Assessment

There are several Bayesian method available to studying model assessment. In this section,
we briefly review some proposals for model adequacy and model comparison.

We first discuss one general method of checking model adequacy, which is known as
posterior predictive assessment approach as advocated in Gelman, Meng and Stern(1996) and
Gelman and Meng(1996). This approach is based on checking the fit of a model to data by
simulating values of a discrepancy measure from posterior predictive distribution and
comparing these sample with the corresponding measure for the observed data.

Let yus and ¥, denote the vector of observed and generated data respectively and let

@ represent the vector of unknown parameters. The algorithm of this approach is
summarized as follows.

(1) Generate ﬁ(k)( k=1,...,L) from the posterior density of @ given yg using the
Gibbs output (for k= 1,..., L), (where L is the total number of Gibbs iterations).

.. . . . 1 )
(i1) Simulate L hypothetical replicates of the data, say y( ), ., ¥ ', Where y

(k=1,...,L) is drawn from the sampling distribution of y given the simulated @ (k).
(iii) Calculate d( ¥, 0(k)) and d( y(k), o‘k’) for k=1,...,L, where d(y, 8) is an
appropriate discrepancy measure.

(iv) Approximate P{d{ ¥pew, 0(k)) 2d( Yos, 0(k>)| Yobs } DY

L3 1(dC ™, 0°) 2 d( ya, 0%)),

where I( - ) is the usual indicator function.

»

If the model is adequate, then the probability should be near 5 ; conversely, for an
inadequate model, this probability is close to 1 or 0. The discrepancy measure that we use for
our proposed model is given by

. (vi—n, p*)*
d(y, 0) = iﬁ;ﬁ 72 0P (1= p Py’
C

where, p;” = F (ﬁfk)) is the generated value of p; from the kth iteration. Other choice of

discrepancy measure have been provided by Gelfand and Ghosh(1998).
The second approach to model comparison is the posterior predictive divergence approach.

let y ®  denote the simulates data vector from the posterior predictive distribution
FC Yoew| Yobs ). We naturally choose a predictive loss to be the expected value of the

average discordance between the simulated data and the observed data, which is
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E [ | Yoew— Yons 112 | ¥ons ] the divergence measure of Laud and Ibrahim (1995). This
quantity is approximated by
L_IAZ“ “ Ynew ™ Yobs ”2

Clearly, there are other possible choice of the loss function beside the squared error loss.
Gelfand and Ghosh(1998) proposed a number of loss function. In the next section, we apply -
these approaches for model checking.

5. Data Analysis

We illustrate in this section the Bayesian analysis for random effect binomial regression
model with real dataset given in Crowder(1978). This example concerns the proportion of

seeds that germinated on each of 21 plates arranged according to a 2x 2 factorial layout by
seed, O.aegyptiaca 75 and O. aegyptiaca 73 and type of root extract, bean and cucumber.

The data are shown below, where y; and #; are the number of germinated and the total

number of seeds on the i¢th plate, 7= 1,...,N. These data are also analyzed by, for
example, Breslow and Clayton(1993).

Table 1. Crowder’'s Seeds Data

seed O. aegyptiaca T5 seed O. aegyptiaca 13
Bean Cucumber Bean Cucumber

y n yln| y n ynly n ylnly n vn
10 39 26 5 6 .83 8 16 50 3 12 .25
23 62 .37 53 4 72 10 30 .33 22 41
23 81 .28 55 72 76 8 28 .29 15 30 .50
26 51 b1 32 51 .63 23 45 51 32 51 .63
17 39 4 46 79 58 0 4 .00 3 7 43
13 .77

Following to the posterior predictive assessment approach, we simulated values of the
discrepancy measure and then approximated E[Il Ypew— Yobs ||2| Yos |- The estimated

probability of 0.416 under the logit model strongly suggests the adequacy of the model
whereas a value of 0.137 and 0.001 for the probit model and the complementary log-log model,
respectively, indicates a lack of fit of the model.

In the posterior predictive divergence approach, the estimated predictive loss for the logit
model, the probit model and the complementary log-log model are 384.62, 535.14 and 941 .68,
respectively. Clearly, it indicates the superiority of the logit model.

Thus, our appropriate choice is a random effects logistic model, allowing for over—dispersion.
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If p; is the probability of germination on the ith plate, we assume
vilp; ~ Binomial(#;, p;)
0;: = logit(p;) = By + Bixy + Boxai + Baxyixa + u;
u; ~ Normal(0,02),
where x,;, = 0 or 1 corresponding to O. aegyptiaca 75 or O. aegyptiaca 73 is cultivated in ¢
-th plate ; x5, = 0 or 1 corresponding to bean and cucumber. The seed type-root extract
interaction was found significant in the frequentist logistic regression analysis. So, an

interaction term fS3x;x; is included in our analysis. Let B = (8, 8, 82, B3) represent the

fixed effects associated with seed and root extract and #; represent random effects associated
with each plate. The u,’s are i.id. N(0,02). We assign a uniform (R*) prior for B8, and
Gamma (0.001, 0.001) prior for », = (¢2) "L

Under the assumption of improper prior for regression parameters, we performed our
production run of five parallel Gibbs chains for 2000 iterations each. We started the five
chains at disparate points in the sample space and discarded the first 1000 iterations of each
chain. In the Gibbs sampling algorithm, we employ the Metropolis-Hastings algorithm for
(2.3)(iii).

After considering plots of the realized chains, sample autocorrelations, cross-correlations and

the monitoring statistic of Gelman and Rubin(1992), we were satisfied with the convergence of
our algorithm.

Table 2. Model Fits to the Crowder’s Seeds Data

Method of Analysis
variable B+ SE B+ SE B+ SE B+ SE
constant( £y ) -558 +£.126 -542 + 190 -542 +.178 -552 *+.188
seed( f;) 146 +.223 077 +.308 028 +.340 065 +.306
extract( 8, ) 1.318 %£.117 1.339 £.270 1.368 +.253 1.345 +.262
interaction( B3) | -.778 +.306 -.825 +.430 -.792 + 426 -812 = .422
scale( g, ) -—= 313 £.121 292 +.152 275 +.148

Table 2 shows the estimates of regression coefficients as well as scale in linear logistic
regression models fitted to the 21 binomial proportion of seed germination. We may compare
simple logistic regression analysis, penalized quasi-likelihood (PQL) analysis (Breslow and
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Clayton, 1993), Bayesian analysis using BUGS output and our result. The classical logistic
regression analysis has not considered at all random effect in modelling. PQL analysis is
non-Bayesian and approximate inference. BUGS has carried out using diffused normal priors.

From Table 2, we can see that all estimates of #;’s and o, are quite comparable to each
other.

The covariance matrix for B is given by

0.035 —0.034 —0.035 0.033

—0.034 0.094 0.034 —0.090

Cov(Bly) =
-0.035 0.034 0.039 —0.068

0.033 —0.090 —0.068 0.178

To compare the predicted number of successes with the actual observed number of

successes, we delete the 7th data point ( = T4, y= 153, seed O. aegyptiaca 75, cucumber)
that is selected at random. We compute for logit link the predictive probability of germination
on the 7th plate based on of the remaining data. The predictive probability is 0.683. So, the
predicted number of germination in 74 seeds is 51, which is quite close to actual value 53.
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